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Abstract. In this paper, we investigate the dynamics of a diffusive Gompertz popula-
tion model with nonlocal delay effect and Dirichlet boundary condition. The stability
of the positive spatially nonhomogeneous steady-state solutions and the existence of
Hopf bifurcations with the change of the time delay are discussed by analyzing the
distribution of eigenvalues of the infinitesimal generator associated with the linearized
system. Then we derive the stability and bifurcation direction of Hopf bifurcating peri-
odic orbits by using the normal form theory and the center manifold reduction. Finally,
we give some numerical simulations.
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1 Introduction

The Gompertz equation is one of the models that are often used to describe the dynamics of
the populations, including cellular populations of tumour growth, see [18, 26, 28–30, 37]. The
basic Gompertz model has the following form

V̇(t) = −rV(t) ln
V(t)

K
, V(0) = V0,

where V is simply the number of cells/individuals and K is the plateau number of cells/in-
dividuals. It was proposed by Benjamin Gompertz in 1825 for the first time (see [18]). Since
Laird et al. [30] showed that the Gompertz model could describe the normal growth of an
organism such as the guinea pig over an incredible 10000-fold range of the growth in [26], the
Gompertz equation is often used in the formulation of equations describing the population dy-
namics and to describe the inner growth of tumour. In order to better describe the investigated
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phenomena, the time delays are often introduced into models [1–4, 7, 12–17, 31, 33, 34, 36]. Lit-
erature [35] introduced the discrete time delay to the classical Gompertz model in different
ways and obtained the following four models with delays:

V̇(t) = −rV(t) ln
V(t− τ)

K
;

V̇(t) = −rV(t− τ) ln
V(t− τ)

K
;

V̇(t) = −rV(t− τ1) ln
V(t− τ2)

K
;

and it also introduced another model with two delays in which it separated two right-hand
side terms describing two different processes, namely, the term r ln KV(t) (with K 6= 1) de-
scribing the growth of the population and the term −rV(t) ln V(t) describing the competition
between individuals, and by using such biological interpretation, it proposed the model with
two delays :

V̇(t) = r ln KV(t− τ1)− rV(t− τ2) ln V(t− τ2),

where τ1 and τ2 reflect the delay of growth and competition, respectively. In [35], it showed
that the model’s dynamics depend crucially on the place where the delay/delays are included.
As the placement of delays in the models reflects the delays of different biological processes to
their stimuli, so this conclusion is not surprising from the biological point of view. The mathe-
matical and numerical analysis presented in it could help researchers who want to incorporate
the Gompertz equation with delays into their models to choose the most appropriate version
of the equation.

Moreover, in mathematical biology, many models of population dynamics can be described
by the delayed reaction–diffusion equations [6, 8, 9, 20]. In recent years, some researchers
[27, 32, 39, 41] have worked on the following reaction–diffusion equations with delay effect:

∂u
∂t

= d∆u + u f (u(x, t− τ), v(x, t− τ)),

∂v
∂t

= d∆v + vg(u(x, t− τ), v(x, t− τ)).

In a reaction–diffusion model with time-delay effect, the individuals which located at x in
previous times may not be at the same point in space presently. So the diffusion and time
delay are always not independent of each other for a delayed reaction–diffusion model (see
References [5,10,11,19,21,22,24,40]). Thus, it is more reasonable to consider the diffusive type
model with nonlocal delay. For instance, Britton [5] introduced the following model:

∂u(x, t)
∂t

= d∆u(x, t) + λu(x, t)(1 + αu− (1 + α)g ∗ ∗u),

where

g ∗ ∗u =
∫ t

−∞

∫
Ω

g(x, y, t− s)u(y, s)dyds,

and analyzed the traveling waves on unbounded domain. Then Gourley and Britton [19] pro-
posed a predator–prey system with spatiotemporal delay. In [10], Chen and Yu analyzed the
following reaction–diffusion equation with spatiotemporal delay and homogeneous Dirichlet
boundary condition:

∂u
∂t

= d
∂2u
∂x2 + λuF(u,

∫ ∞

0

∫ π

0
G(x, y, s) f (s)u(y, t− s)dyds), x ∈ (0, π), t > 0,

u(x, t) = 0, x = 0, π, t > 0,



Hopf bifurcation of a Gompertz population model 3

where

G(x, y, t) =
2
π

∞

∑
k=1

e−dk2t sin kx sin ky,

and f (t) is the delay kernel, satisfying f (t) ≥ 0, for t ≥ 0, and
∫ ∞

0 f (t)dt = 1. It is shown that
a positive spatially nonhomogeneous equilibrium can bifurcate from the trivial equilibrium.
Moreover, the stability of the bifurcated positive equilibrium was investigated. And they also
proved that, for the given spatiotemporal delay, the bifurcated equilibrium is stable under
some conditions, and Hopf bifurcation cannot occur. Chen and Yu [11] studied the following
general form:

∂u(x, t)
∂t

= d∆u + λu(x, t)F
(

u(x, t),
∫

Ω
K(x, y)u(y, t− τ)dy

)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

Guo and Yan [24] investigated the following diffusive Lotka–Volterra type population model
with nonlocal delay effect:

∂u(x, t)
∂t

= d∆u + λu[1− (A11 ∗ u)(x, t− τ)− (A12 ∗ v)(x, t− τ)],

∂v(x, t)
∂t

= d∆v + λv[1− (A21 ∗ u)(x, t− τ)− (A22 ∗ v)(x, t− τ)],

for all x ∈ Ω and t > 0, where Aij, i, j = 1, 2, are kernel functions and

(Aij ∗ f )(x, t) =
∫

Ω
Aij(x, y) f (y, t)dy, i, j = 1, 2.

The existence and multiplicity of spatially nonhomogeneous steady-state solutions are ob-
tained by using Lyapunov–Schmidt reduction. Through analyzing the distribution of eigen-
values of the infinitesimal generator associated with the linearized system, we show the stabil-
ity of spatially nonhomogeneous steady-state solutions and the existence of Hopf bifurcation
with the changes of the time delay. The stability and bifurcation direction of Hopf bifurcating
periodic orbits are derived by the normal form theory and the center manifold reduction.

In this paper, we investigate the following diffusive Gompertz population model with
nonlocal delay effect:

∂w(x, t)
∂t

= d∆w(x, t)

+ λw(x, t)
(

1− ρ(λ)
∫

Ω
K(x, y)w(y, t− τ) ln w(y, t− τ)dy

)
, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ ∂Ω, t > 0,

where w(x, t) is the population density at time t and location x, d > 0 is the diffusion coef-
ficient, τ ≥ 0 is the time delay, λ > 0 is a scaling constant, Ω is a connected bounded open
domain in Rn (n ≥ 1), with a smooth boundary ∂Ω, and Dirichlet boundary condition is
imposed so the exterior environment is hostile, ρ(λ) is the function of λ, K(x, y) is a kernel
function which describes the dispersal behavior of the population. The nonlocal growth rate
per capita incorporates the possible dispersal of the individuals during the maturation period,
hence it is a more realistic model.
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We first introduce some notations. Denote X = H2(Ω) ∩ H1
0(Ω), Y = L2(Ω), where

H1
0(Ω) = {u ∈ H1(Ω) | u(x) = 0, x ∈ ∂Ω}. For a space Z, we also define the complexification

of Z to be ZC , Z
⊕

iZ = {x1 + ix2 | x1, x2 ∈ Z}. Denote by C([−τ, 0], Y) the Banach
space of continuous mappings from [−τ, 0] into Y equipped with the supremum norm ‖φ‖ =
sup−τ≤θ≤0{‖φ(θ)‖Y} for φ ∈ C([−τ, 0], Y). For a linear operator L : Z1 → Z2, we denote the
domain of L by D(L). For the complex-valued Hilbert space Y2

C, we use the standard inner
product 〈u, v〉 =

∫
Ω ūT(x)v(x)dx.

Let λ∗ be the principal eigenvalue of the linear operator −d∆ subject to the homogeneous
Dirichlet boundary condition w = 0 on ∂Ω, and let φ be the corresponding eigenfunction of
λ∗ such that φ(x) > 0 for all x ∈ Ω.

Throughout the paper, we assume that the kernel function K(x, y) is a continuous and non-
negative function on Ω̄× Ω̄, and

∫
Ω K(x, y)ϕ(y)dy > 0 for all positive continuous functions ϕ

on Ω, and ρ(λ) = λ− λ∗. When ρ(λ) = λ− λ∗, the above model becomes

∂w(x, t)
∂t

= d∆w(x, t) + λw(x, t)

×
(

1− (λ− λ∗)
∫

Ω
K(x, y)w(y, t− τ) ln w(y, t− τ)dy

)
, x ∈ Ω, t > 0,

w(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.1)

We consider system (1.1) with the following initial condition:

w(x, s) = η(x, s), x ∈ Ω, s ∈ [−τ, 0], (1.2)

where η ∈ C([−τ, 0], Y). From [25], we know that the operator d∆ generates an analytic
strongly positive semigroup T(t) on Y with the domain D(d∆) = X.

The rest of the paper is organized as follows. In Section 2, we study the existence of the
positive spatially nonhomogeneous equilibrium of system (1.1). In Section 3, we consider the
eigenvalue problems. In Section 4, we show the stability of the bifurcated positive equilibrium
and the occurrence of Hopf bifurcation. In Section 5, the direction of the Hopf bifurcation is
given by using normal form theorem and the center manifold theorem. Some numerical
simulations are given in Section 6.

2 The existence of the positive spatially nonhomogeneous equilib-
rium

In this section, we study the existence of the spatially nonhomogeneous positive steady state
solutions of system (1.1), which satisfies the following boundary value problem:d∆w(x) + λw(x)

(
1− (λ− λ∗)

∫
Ω

K(x, y)w(y) ln w(y)dy
)
= 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.
(2.1)

Firstly, we have the following decompositions:

X = N (d∆ + λ∗)⊕X1,

Y = N (d∆ + λ∗)⊕Y1,
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where
N (d∆ + λ∗) = span{φ},

X1 =

{
ψ ∈ X |

∫
Ω

φ(x)ψ(x)dx = 0
}

,

Y1 =

{
ψ ∈ Y |

∫
Ω

φ(x)ψ(x)dx = 0
}

.

Then we can obtain the following theorem about the existence of the positive equilibrium
solutions of Eq. (2.1) by using the implicit function theorem.

Theorem 2.1. There exist λ∗ > λ∗ and a continuously differential mapping λ → (ξλ, βλ) from
[λ∗, λ∗] to X1 ×R+, such that (1.1) has an equilibrium solution

wλ = βλ[φ + (λ− λ∗)ξλ], (2.2)

where βλ∗ > 0 satisfies

λ∗β
∫

Ω

∫
Ω

K(x, y)φ2(x)φ(y) ln(βφ(y))dxdy =
∫

Ω
φ2(x)dx, (2.3)

and ξλ∗ is the unique solution of the equation

(d∆ + λ∗)ξ + φ

[
1− λ∗βλ∗

∫
Ω

K(x, y)φ(y) ln(βλ∗φ(y))dy
]
= 0. (2.4)

Proof. Since d∆+ λ∗ is bijective from X1 to Y1 and φ
[
1−λ∗βλ∗

∫
Ω K(x, y)φ(y)(ln βλ∗φ(y))dy

]
∈

Y1, we have ξλ∗ is well defined.
Next, we prove wλ is the solution to (2.1). Define g : X1 ×R×R→ Y by

g(ξ, β, λ) = (d∆ + λ∗)ξ + φ + (λ− λ∗)ξ

− λβ[φ + (λ− λ∗)ξ]
∫

Ω
K(x, y)[φ + (λ− λ∗)ξ] ln β[φ + (λ− λ∗)ξ]dy.

From Eqs. (2.3) and (2.4), we see that g(ξλ∗ , βλ∗ , λ∗) = 0, and

D(ξ,β)g(ξλ∗ , βλ∗ , λ∗)[γ, ε] = (d∆ + λ∗)γ− λ∗φ
∫

Ω
K(x, y)φ(y)(ln βλ∗φ(y) + 1)dyε.

Here D(ξ,β)g(ξλ∗ , βλ∗ , λ∗)[γ, ε] is the Fréchet derivative of g with respect to (ξ, β).
As ∫

Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy 6= 0,

we have
φ
∫

Ω
K(x, y)φ(y)(ln βλ∗φ(y) + 1)dy 6∈ Y1.

So D(ξ,β)g(ξλ∗ , βλ∗ , λ∗) is bijective from X1×R to Y. Then from the implicit function theorem,
there exist a λ∗ > λ∗ and a continuously differentiable mapping λ 7→ (ξλ, βλ) ∈ X1×R+ such
that

g(ξλ, βλ, λ) = 0, λ ∈ [λ∗, λ∗],

which implies that wλ solves Eq. (2.1).
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3 Eigenvalue problems

Let λ ∈ (λ∗, λ∗], and wλ be the positive equilibrium solution of (2.1) obtained in Theorem 2.1.
Linearizing system (2.1) at wλ, we have

∂v(x, t)
∂t

= d∆v(x, t) + λ

(
1− (λ− λ∗)

∫
Ω

K(x, y)wλ(y) ln wλ(y)dy
)

v(x, t)

− λ(λ− λ∗)wλ(x)
∫

Ω
K(x, y)(ln wλ(y) + 1)v(y, t− τ)dy, x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0,

(3.1)

Define a linear operator B(λ) : D(B(λ))→ Y by

B(λ) = d∆ + λ

(
1− (λ− λ∗)

∫
Ω

K(x, y)wλ(y) ln wλ(y)dy
)

,

with domain D(B(λ)) = X. From [38], the semigroup induced by the solutions of (3.1) has
the infinitesimal generator Bτ(λ) given by

Bτ(λ)ϕ = ϕ̇, (3.2)

where

D(Bτ(λ)) =

{
ϕ ∈ CC ∩ C1

C : ϕ(0) ∈ XC,

ϕ̇ = B(λ)ϕ(0)− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ϕ(−τ)(y)dy
}

,

and C1
C = C1([−τ, 0], YC).

The spectral set of Bτ(λ) is

σ(Bτ(λ)) = {µ ∈ C : ∆(λ, µ, τ)ψ = 0, for some ψ ∈ XC\{0}},

where

∆(λ, µ, τ)ψ := B(λ)ψ− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(y)dye−µτ − µψ.

Then Bτ(λ) has a purely imaginary eigenvalue µ = iω(ω 6= 0) for some τ ≥ 0 if and only
if

B(λ)ψ− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(y)dye−iθ − iωψ = 0. (3.3)

is solvable for some ω > 0, ψ 6= 0 and θ ∈ [0, 2π). So if there exists a pair (ω, θ) such that
(3.3) has a solution ψ, then

∆(λ, iω, τn)ψ = 0, τn =
θ + 2nπ

ω
, n = 0, 1, 2, . . .

Next, we will show that for λ ∈ (λ∗, λ∗], there exists a unique pair (ω, θ) which solves
(3.3). Assume that (ω, θ, ψ) is a solution of (3.3) with ψ( 6= 0) ∈ XC. Ignoring a scalar factor, ψ

can be represented as

ψ = αφ + (λ− λ∗)z, 〈φ, z〉 = 0, α ≥ 0,

‖ψ‖2
YC

= α2‖φ‖2
YC

+ (λ− λ∗)
2‖z‖2

YC
= ‖φ‖2

YC
.

(3.4)
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Substituting (2.2), (3.4) and ω = (λ− λ∗)h into (3.3), we obtain the following equation equiv-
alent to (3.3):

f1(z, α, h, θ, λ) := (d∆ + λ∗)z

+ [αφ + (λ− λ∗)z]
(

1− λ
∫

Ω
K(·, y)wλ(y) ln wλ(y)dy− ih

)
− λβλ[φ + (λ− λ∗)ξλ]

×
∫

Ω
K(·, y)[αφ + (λ− λ∗)z](ln βλ[φ + (λ− λ∗)ξλ] + 1)dye−iθ ,

f2(z, α, λ) := (α2 − 1)‖φ‖2
YC

+ (λ− λ∗)
2‖z‖2

YC
.

(3.5)

Note that when λ = λ∗,
f2(z, α, λ) = 0⇔ α = αλ∗ = 1.

We have

f1(z, αλ∗ , h, θ, λ∗) = (d∆ + λ∗)z + φ

(
1− λ∗βλ∗

∫
Ω

K(·, y)φ(y) ln βλ∗φ(y)dy− ih
)

− λ∗βλ∗φ
∫

Ω
K(·, y)φ(y)(ln βλ∗φ(y) + 1)dye−iθ .

Hence
f1(z, αλ∗ , h, θ, λ∗) = 0,

is solvable for some value of z ∈ (X1)C, h ≥ 0 and θ ∈ [0, 2π) if and only if there exists a pair
(h, θ) with h ≥ 0 and θ ∈ [0, 2π) satisfying

λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy cos θ

=
∫

Ω
φ2(x)dx− λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y) ln βλ∗φ(y)dy,

h
∫

Ω
φ2(x)dx = λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy sin θ.

Solving the above equation, we have

θλ∗ = arccos

∫
Ω

φ2(x)dx− λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y) ln βλ∗φ(y)dy

λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy
,

hλ∗ =
λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy sin θλ∗∫
Ω

φ2(x)dx
,

and zλ∗ ∈ (X1)C is the unique solution of the following equation

(d∆ + λ∗)z + φ

(
1− λ∗βλ∗

∫
Ω

K(·, y)φ(y) ln βλ∗φ(y)dy− ihλ∗

)
− λ∗βλ∗φ

∫
Ω

K(·, y)φ(y)(ln βλ∗φ(y) + 1)dye−iθλ∗ = 0.

Define F : (X1)C×R3×R→ YC×R by F = ( f1, f2). Then we have the following theorem
on the solvability of F = 0.



8 X. Sun, L. Wang and B. Tian

Theorem 3.1. There exists a continuously differentiable mapping λ 7→ (zλ, αλ, hλ, θλ) from [λ∗, λ∗]

to XC ×R3 such that F(zλ, αλ, hλ, θλ, λ) = 0. Moreover,{
F(z, α, h, θ, λ) = 0,

α, h ≥ 0, θ ∈ [0, 2π).

has a unique solution (zλ, αλ, hλ, θλ).

The proof is similar to Theorem 2.5 of [8] and we omit it here.
To summarise, we have the following result about the eigenvalue problem.

Corollary 3.2. For λ ∈ (λ∗, λ∗], the eigenvalue problem

∆(λ, iω, τ)ψ = 0, ω ≥ 0, τ ≥ 0, ψ( 6= 0) ∈ XC,

has a solution if and only if

ω = ωλ = (λ− λ∗)hλ, τ = τn =
θλ + 2nπ

ωλ
, n = 0, 1, 2, . . . , (3.6)

and
ψ = cψλ, ψλ = αλφ + (λ− λ∗)zλ,

where c is a nonzero constant, and zλ, αλ, hλ, θλ are defined as in Theorem 3.1.

Next, we consider the adjoint operator of Bτ(λ) for later application. Similar as in [8], we
see that the adjoint operator is

∆̃(λ, iω, τ)ψ̃ = B(λ)ψ̃− λ(λ− λ∗)
∫

Ω
K(y, ·)wλ(y)(ln wλ(x) + 1)ψ̃(y)dyeiωτ + iωψ̃,

which satisfies
〈ψ̃, ∆(λ, iω, τ)ψ〉 = 〈∆̃(λ, iω, τ)ψ̃, ψ〉,

Its point spectrum is the same as that of ∆(λ, iω, τ):

σp(∆(λ, iω, τ)) = σp(∆̃(λ, iω, τ)).

We conclude that if the corresponding adjoint equation

B(λ)ψ̃− λ(λ− λ∗)
∫

Ω
K(y, ·)wλ(y)(ln wλ(x) + 1)ψ̃(y)dyeiθ̃ + iω̃ψ̃ = 0, ψ̃( 6= 0) ∈ XC, (3.7)

is solvable for some value of ω̃ > 0, θ̃ ∈ [0, 2π), then

∆̃(λ, iω̃, τ̃n)ψ̃ = 0, τ̃n =
θ̃ + 2nπ

ω̃
, n = 0, 1, 2, . . .

Similarly, for λ ∈ (λ∗, λ∗], there is a unique (ω̃, θ̃, ψ̃) which is the solution to (3.7), ψ̃( 6= 0) ∈
XC. ψ̃ can be represented as

ψ̃ = α̃φ + (λ− λ∗)z̃, 〈φ, z̃〉 = 0, α̃ ≥ 0,

‖ψ̃‖2
YC

= α̃2‖φ‖2
YC

+ (λ− λ∗)
2‖z̃‖2

YC
= ‖φ‖2

YC
.

(3.8)
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Substituting (3.8) and ω̃ = (λ− λ∗)h̃ into (3.7), we obtain the following equation equivalent
to (3.7):

f̃1(z̃, α̃, h̃, θ̃, λ) := (d∆ + λ∗)z̃ + [α̃φ + (λ− λ∗)z̃]

×
(

1− λ
∫

Ω
K(x, y)wλ(y) ln wλ(x)dy + ih̃

)
− λβλ

∫
Ω

K(y, x)[φ(y) + (λ− λ∗)ξλ(y)][α̃φ + (λ− λ∗)z̃]

× (ln βλ[φ(x) + (λ− λ∗)ξλ(x)] + 1)dyeiθ̃ ,

f̃2(z̃, α̃, λ) := (α̃2 − 1)‖φ‖2
YC

+ (λ− λ∗)
2‖z̃‖2

YC
.

(3.9)

Similarly to (3.5), we obtain

α̃λ∗ = 1,

θ̃λ∗ = arccos

∫
Ω

φ2(x)dx− λ∗βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y) ln βλ∗φ(y)dy

λ∗βλ∗

∫
Ω

∫
Ω

K(y, x)φ(x)φ2(y)(ln βλ∗φ(x) + 1)dxdy
,

h̃λ∗ =
λ∗βλ∗

∫
Ω

∫
Ω

K(y, x)φ(x)φ2(y)(ln βλ∗φ(x) + 1)dxdy sin θ̃λ∗∫
Ω

φ2(x)dx
,

and z̃λ∗ ∈ (X1)C is the unique solution of the following equation

(d∆ + λ∗)z̃ + φ

(
1− λ∗βλ∗

∫
Ω

K(·, y)φ(y) ln βλ∗φ(y)dy + ih̃λ∗

)
− λ∗βλ∗φ

∫
Ω

K(y, ·)φ(y)(ln βλ∗φ(x) + 1)dye−iθλ∗ = 0.

Define F̃ : (X1)C ×R3 ×R → YC ×R by F̃ = ( f̃1, f̃2). Then we have the following result
which can be proved similarly as in Theorem 3.1 and Corollary 3.2.

Theorem 3.3.

(1) There exists a continuously differentiable mapping λ 7→ (z̃λ, α̃λ, h̃λ, θ̃λ) from [λ∗, λ∗] to XC ×
R3 such that F̃(z̃λ, α̃λ, h̃λ, θ̃λ, λ) = 0. Moreover,{

F̃(z, α, h, θ, λ) = 0,

α, h ≥ 0, θ ∈ [0, 2π).

has a unique solution (z̃λ, α̃λ, h̃λ, θ̃λ).

(2) For λ ∈ (λ∗, λ∗], the eigenvalue problem

∆̃(λ, iω̃, τ̃)ψ̃ = 0, ω̃ ≥ 0, τ̃ ≥ 0, ψ̃( 6= 0) ∈ XC,

has a solution if and only if

ω̃ = ω̃λ = (λ− λ∗)h̃λ, τ̃ = τ̃n =
θ̃λ + 2nπ

ω̃λ
, n = 0, 1, 2, . . . (3.10)

and
ψ̃ = cψ̃λ, ψ̃λ = α̃λφ + (λ− λ∗)z̃λ,

where c is a nonzero constant.
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Remark 3.4. From the above discussion, we can see that hλ = h̃λ and θλ = θ̃λ, and conse-
quently ωλ = ω̃λ and τn = τ̃n. Therefore, in the following, we will only use (hλ, θλ, ωλ, τn)

and not the ones with tilde. But the corresponding eigenfunctions of ∆(λ, iωλ, τn) may be
different from the ones for the adjoint operator ∆̃(λ, iωλ, τn).

4 Stability and Hopf bifurcations

In this section, we first give the stability of the positive equilibrium wλ of (1.1) when τ = 0
and then discuss the existence of Hopf bifurcations.

Proposition 4.1. For each λ ∈ (λ∗, λ∗], all the eigenvalues of Bτ(λ) have negative real parts when
τ = 0, therefore the positive equilibrium wλ of (1.1) is locally asymptotically stable when τ = 0.

Proof. Otherwise, there exists a sequence {λn}∞
n=1, such that λn > λ∗ for n ≥ 1, limn→∞ λn =

λ∗, and for n ≥ 1, the corresponding eigenvalue problem{
B(λn)ψ− λn(λn − λ∗)wλn

∫
Ω K(·, y)(ln wλn(y) + 1)ψ(y)dy = µψ, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω,
(4.1)

has an eigenvalue µλn ≥ 0, Reµλn ≥ 0 and the eigenfunction ψλn , ‖ψλn‖ = 1.
For n ≥ 1, we write ψλn as ψλn = cλn wλn + φλn , where cλn ∈ C and cλn = 〈wλn , ψλn〉/

〈wλn , wλn〉. wλn is the positive solution of (1.1) when λ = λn, and φλn ∈ XC satisfies
〈φλn , wλn〉 = 0. If φλn ≡ 0, then we substitute ψλn = cλn wλn and µ = µλn into the first
equation of (4.1) and obtain

−µλn wλn = λn(λn − λ∗)wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)wλn(y)dy,

which is a contradiction. Hence φλn 6≡ 0 for each n ≥ 1. Since

〈B(λn)φλn , wλn〉 = 〈φλn , B(λn)wλn〉, B(λn)wλn = 0,

multiplying the first equation of (4.1) by ψλn = cλn wλn + φλn when µ = µλn , we can get

〈B(λn)φn, φλn〉 = λn(λn − λ∗)

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)ψλn(y)dy, ψλn

〉
+ µλn . (4.2)

As wλn is the principal eigenfunction of Bλn with principal eigenvalue 0, so 〈Bλn φλn , φλn〉< 0.
Then

0 ≤ Re(µλn) ≤ Re
[
− λn(λn − λ∗)

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)ψλn(y)dy, ψλn

〉]
→ 0,

as n→ ∞, hence limn→∞ Re(µλn) = 0.
From (4.2), we have

|Im(µλn)| =
∣∣∣∣Im[− λn(λn − λ∗)

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)ψλn(y)dy, ψλn

〉]∣∣∣∣→ 0,

as n→ ∞. Similar to the proof of Lemma 2.3 of [8], we get

|λ2(λn)| · ‖φλn‖2
YC
≤ |〈B(λn)φλn , φλn〉|, (4.3)
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where λ2(λn) is the second eigenvalue of B(λn).
Then

|λ2(λn)| · ‖φλn‖2 ≤
∣∣∣∣λn(λn − λ∗)

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)ψλn(y)dy, ψλn

〉∣∣∣∣+ |µλn |.

Since
λ2(λn) = λ2 − λ∗ > 0,

so limn→∞ ‖φλn‖YC
= 0.

Denote Eλn = λn(λn − λ∗)〈wλn

∫
Ω K(·, y)(ln wλn(y) + 1)ψλn(y)dy, ψλn〉, then

Eλn = λn(λn − λ∗)|cλn |2
〈

wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)wλn(y)dy, wλn

〉
+ λn(λn − λ∗)cλn

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)wλn(y)dy, φλn

〉
+ λn(λn − λ∗)cλn

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)φλn(y)dy, wλn

〉
+ λn(λn − λ∗)

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)φλn(y)dy, φλn

〉
.

Since

lim
n→∞

〈
wλn

∫
Ω

K(·, y)(ln wλn(y) + 1)wλn(y)dy, wλn

〉
= β3

λ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy > 0,

and limn→∞ ‖φλn‖YC
= 0, then there exists N∗ ∈ N such that for each n ≥ N∗, Re(Eλn) > 0,

which implies that
Re(µλn) = 〈B(λn)φλn , φλn〉 − Re(Eλn) < 0.

This is a contradiction with Re(µλn) ≥ 0 for n ≥ 1. So all the eigenvalues of Bτ(λ) have
negative real parts when τ = 0.

Theorem 4.2. Assume that λ ∈ (λ∗, λ∗], then µ = iωλ is a simple eigenvalue of Bτn for n =

0, 1, 2, . . .

Proof. Suppose that there exists φ1 ∈ D(Bτn) ∩D([Bτn ]
2) such that [Bτn(λ)− iωλ]

2φ1 = 0, then

[Bτn(λ)− iωλ]φ1 ∈ N [Bτn(λ)− iωλ] = Span{eiωλ·ψλ}.

So there exists a constant a such that

[Bτn(λ)− iωλ]φ1 = aeiωλ·ψλ.

Hence

φ̇1(θ) = iωλφ1(θ) + aeiωλθψλ, θ ∈ [−τn, 0],

φ̇1(0) = B(λ)φ1(0)− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)φ1(−τn)(y)dy.
(4.4)
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From the first equation of (4.4), we have

φ1(θ) = φ1(0)eiωλθ + aθeiωλθψλ,

φ̇1(0) = iωλφ1(0) + aψλ.
(4.5)

Then from Eqs. (4.4) and (4.5), we can obtain

∆(λ, iωλ, τn)φ1(0) = [B(λ)− iωλ]φ1(0)− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)φ1(0)(y)dye−iθλ

= aψλ + λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)φ1(−τn)(y)dy

− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)φ1(0)(y)dye−iθλ .

Since φ1(−τn) = φ1(0)e−iωλτn − aτne−iωλτn , then we have

∆(λ, iω, τn)φ1(0) = a
(

ψλn − λ(λ− λ∗)τnwλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iθλ

)
.

Hence

0 = 〈∆̃(λ, iω̃, τ̃n)ψ̃λ, φ1(0)〉
= 〈∆̃(λ, iω, τn)ψ̃λ, φ1(0)〉
= 〈ψ̃λ, ∆(λ, iω, τn)φ1(0)〉

= a
( ∫

Ω

¯̃ψλ(y)ψλ(y)dy

− λ(λ− λ∗)τnwλ

∫
Ω

∫
Ω

K(x, y)wλn(x)(ln wλ(y) + 1) ¯̃ψλ(x)ψλ(y)dxdye−iθλ

)
.

When λ→ λ∗,∫
Ω

¯̃ψλ(y)ψλ(y)dy− λ(λ− λ∗)τnwλ

∫
Ω

∫
Ω

K(x, y)wλn(x)(ln wλ(y) + 1) ¯̃ψλ(x)ψλ(y)dxdye−iθλ

→
∫

Ω
φ2(y)dy > 0.

So a = 0. Thus φ1 ∈ N [Bτn(λ)− iωλ].
By induction, we obtain

N [Bτn(λ)− iωλ]
j = N [Bτn(λ)− iωλ], j = 1, 2, . . . , n = 0, 1, 2, . . .

Therefore, µ = iωλ is a simple eigenvalue of Bτn for n = 0, 1, 2, . . .

Since µ = iωλ is a simple eigenvalue of Bτn , then from the implicit function theorem,
there are a neighborhood O1n ×O2n ×O3n ⊂ R×C×XC of (τn, iωλ, ψλ) and a continuously
differential function (µ, ψ) : O1n → O2n ×O3n such that for each τ ∈ O1n, the only eigenvalue
of Bτ(λ) in O2n is µ(τ), and

µ(τn) = iωλ, ψ(τn) = ψλ,

∆(λ, µ(τ), τ) = [B(λ)− µ(τ)]ψ(τ)

− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(τ)(y)dye−µ(τ)τ

= 0, τ ∈ O1n.

(4.6)

Then we have the following transversality condition.
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Theorem 4.3. Suppose that λ ∈ (λ∗, λ∗] and µ(τ) is the eigenvalue of Bτ(λ), then

d Re(µ(τn))

dτ
> 0, n = 0, 1, 2, . . .

Proof. Differentiating (4.6) with respect to τ at τ = τn, we obtain[
− ψλ + λ(λ− λ∗)τnwλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iθλ

]
dµ(τn)

dτ

+ ∆(λ, iωλ, τn)
dψ(τn)

dτ
+ λ(λ− λ∗)iωλwλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iθλ = 0.

Multiplying the above equation by ¯̃ψλ(x) and integrating on Ω, we have

dµ(τn)
dτ =

λ(λ−λ∗)iωλ

∫
Ω

∫
Ω K(x,y)wλ(x)(ln wλ(y)+1)ψλ(y) ¯̃ψλ(x)dxdye−iθλ∫

Ω ψλ(x) ¯̃ψλ(x)dx−λ(λ−λ∗)τn
∫

Ω

∫
Ω K(x,y)wλ(x)(ln wλ(y)+1)ψλ(y) ¯̃ψλ(x)dxdye−iθλ

=
λ(λ−λ∗)ωλ

∫
Ω

∫
Ω K(x,y)wλ(x)(ln wλ(y)+1)ψλ(y) ¯̃ψλ(x)dxdy[sin θλ+i cos θλ]∫

Ω ψλ(x) ¯̃ψλ(x)dx−λ(λ−λ∗)τn
∫

Ω

∫
Ω K(x,y)wλ(x)(ln wλ(y)+1)ψλ(y) ¯̃ψλ(x)dxdy(cos θλ−i sin θλ)

.

Re
dµ(τn)

dτ

=
λ(λ− λ∗)ωλ

∫
Ω

∫
Ω

K(x, y)wλ(x)(ln wλ(y) + 1)ψλ(y) ¯̃ψλ(x)dxdy
∫

Ω
ψλ(x) ¯̃ψλ(x)dx sin θλ

Mλ
,

where

Mλ =

∣∣∣∣ ∫Ω
ψλ(x) ¯̃ψλ(x)dx

− λ(λ− λ∗)τn

∫
Ω

∫
Ω

K(x, y)wλ(x)(ln wλ(y) + 1)ψλ(y) ¯̃ψλ(x)dxdy cos θλ

∣∣∣∣2
+

∣∣∣∣λ(λ− λ∗)τn

∫
Ω

∫
Ω

K(x, y)wλ(x)(ln wλ(y) + 1)ψλ(y) ¯̃ψλ(x)dxdy sin θλ

∣∣∣∣2 .

When λ→ λ∗,
ψλ → φ, ψ̃λ → φ, wλ → βλ∗φ.

So ∫
Ω

∫
Ω

K(x, y)wλ(x)(ln wλ(y) + 1)ψλ(y) ¯̃ψλ(x)dxdy
∫

Ω
ψλ(x) ¯̃ψλ(x)dx sin θλ

→ βλ∗

∫
Ω

∫
Ω

K(x, y)φ2(x)φ(y)(ln βλ∗φ(y) + 1)dxdy
∫

Ω
φ2(x)dx sin θλ∗ > 0.

Therefore, when λ ∈ (λ∗, λ∗], dRe(µ(τn))
dτ > 0, n = 0, 1, 2, . . .

From the above conclusions, we have the following theorem.

Theorem 4.4. For λ ∈ (λ∗, λ∗], the infinitesimal generator Bτ(λ) has exactly 2(n + 1) eigenvalues
with positive real parts when τ ∈ (τn, τn+1], n = 0, 1, 2, . . .

Then we obtain the following theorem.

Theorem 4.5. For λ ∈ (λ∗, λ∗], the positive equilibrium solution wλ of (1.1) is locally asymptotically
stable when τ ∈ [0, τ0) and is unstable when τ ∈ (τ0, ∞). Moreover, a Hopf bifurcation occurs at
τ = τn (n = 0, 1, 2, . . . ), that is, a branch of spatially nonhomogeneous periodic orbits of (1.1) emerges
from (τn, wλ).
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5 The direction of the Hopf bifurcation

Let W(t) = w(·, t)− wλ, τ = τn + γ, then γ = 0 is the Hopf bifurcation value of system (1.1).
Let t→ t

τ , then system (1.1) can be written in the following form

dW(t)
dt

= τn(d∆W(t) + L0(W(t))) + J(Wt, γ) (5.1)

where Wt ∈ C,

L0(ψ) = λ(1− (λ− λ∗)
∫

Ω
K(·, y)wλ(y) ln wλ(y)dy)ψ(0)

− λ(λ− λ∗)wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(−1)(y)dy,

J(ψ, γ) = γd∆ψ(0) + γL0(ψ)

− (γ + τn)λ(λ− λ∗)ψ(0)
∫

Ω
K(·, y)(ln wλ(y) + 1)ψ(−1)(y)dy + O(3),

for ψ ∈ C, C = C([−1, 0], Y).
Denote Bτn to be the infinitesimal generator of the linearized equation

dW(t)
dt

= τn(d∆W(t) + L0(W(t))).

Then
Bτn ψ = ψ̇,

D(Bτn) =

{
ψ ∈ C ∩ C1 : ψ(0) ∈ XC,

ψ̇(0) = τnB(λ)ψ(0)− λ(λ− λ∗)τnwλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(−1)(y)dy
}

,

where C1 = C1([−1, 0], YC).
Hence (5.1) can be written in the following abstract form

dWt

dt
= BτnWt + X0 J(Wt, γ), (5.2)

where

X0(θ) =

{
0, θ ∈ [−1, 0),

I, θ = 0.

We know that Bτn has only one pair of purely imaginary eigenvalues ±iωλτn which are
simple. The corresponding eigenfunction with respect to iωλτn (or −iωλτn) is ψλ(x)eiωλτnθ (or
ψ̄λ(x)e−iωλτnθ) for θ ∈ [−1, 0]. We introduce the formal duality� ·, · � by

� ψ̃, ψ�= 〈ψ̃(0), ψ(0)〉

− λ(λ− λ∗)τn

∫ 0

−1

〈
ψ̃(s + 1), wλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ(s)(y)dy
〉

ds,
(5.3)

for ψ ∈ C and ψ̃ ∈ C∗C := C([0, 1], YC).
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Define an operator B∗τn
: D(B∗τn

)→ C∗C, B∗τn
ψ̃(s) = − ˙̃ψ(s), and

D(B∗τn
) =

{
ψ̃ ∈ C∗C ∩ (C∗C)

1 : ψ̃(0) ∈ XC,

˙̃ψ(0) = τnB(λ)ψ̃(0)− λ(λ− λ∗)τn

∫
Ω

K(y, ·)wλ(y)(ln wλ(y) + 1)ψ̃(1)(y)dy
}

,

where (C∗C)
1 = C1([0, 1], YC).

Then B∗τn
and Bτn satisfy

� B∗τn
ψ̃, ψ�=� ψ̃,Bτn ψ�, for ψ ∈ D(Bτn), ψ̃ ∈ D(B∗τn

).

The operator B∗τn
has only one pair of purely imaginary eigenvalues ±iωλτn which are simple,

and the corresponding eigenfunction with respect to iωλτn (or −iωλτn) is ¯̃ψλ(x)e−iωλτns (or
ψ̃λ(x)eiωλτns) for s ∈ [0, 1]. So B∗τn

and Bτn are adjoint operators under the bilinear form (5.3).
The center subspace of (5.1) is P = span{p(θ), p̄(θ)}, where p(θ) = ψλeiωλτnθ is the eigen-

function of Bτn with respect to iωλτn. Similarly, the formal adjoint subspace of P with respect
to the bilinear form (5.3) is P∗ = span{q(s), q̄(s)}, where q(s) = ψ̃λeiωλτns is the eigenfunc-
tion of B∗τn

with respect to −iωλτn. Then CC can be decomposed as CC = P ⊕ Q, where
Q = {ψ ∈ CC :� ψ̃, ψ�= 0, for all ψ̃ ∈ P∗}.

Let Φ = (p(θ), p̄(θ)), Ψ = D(q(s), q̄(s))T, where

D̄ =

[∫
Ω

ψλ(x) ¯̃ψλ(x)− λ(λ− λ∗)τn

∫
Ω

∫
Ω

K(x, y)wλ(x)(ln wλ(y) + 1) ¯̃ψλ(x)ψλ(y)e−iωλτn

]−1

,

then� Ψ, Φ�= Id2, where Id2 is the identity matrix in R2×2.
Define z(t) =� Dq(s), Wt �, and denote

H(t, θ) = Wt(θ)−Φ · (z(t), z̄(t))T (5.4)

then H(t, θ) ∈ Q.
On the center manifold, we have H(t, θ) = H(z, z, θ), where H(z, z, θ) can be expanded the

power series of z and z,

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · ·, (5.5)

where z and z are local coordinates for the center manifold in the direction of q and q̄.
The flow of (5.1) on the center manifold can be written as:

ż(t) =
d
dt
� Dq(s), Wt �

=� Dq(s),BτnWt � +� Dq(s), X0 J(Wt, 0)�
=� DB∗τn

q(s), Wt � +〈Dq(0), J(Wt, 0)〉
=� −iωλτnDq(s), Wt � +〈Dq(0), J(Φ · (z(t), z̄(t))T + H(z(t), z̄(t), θ), 0)〉
= iωλτnz(t) + 〈Dq(0), J(Φ · (z(t), z̄(t))T + H(z(t), z̄(t), θ), 0)〉.

(5.6)

Denote

J(Φ · (z(t), z̄(t))T + H(z(t), z̄(t), θ), 0)〉 = Jz2
z2

2
+ Jzz̄zz̄ + Jz̄2

z̄2

2
+ Jz2 z̄

z2z̄
3

+ · · ·
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We rewrite (5.6) as
ż(t) = iωλτnz(t) + g(z, z)(t), (5.7)

where

g(z, z) = 〈Dq(0), J(Φ · (z(t), z̄(t))T + H(z(t), z̄(t), θ), 0)〉

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · ·,

then

g20 = − 2λ(λ− λ∗)τnD̄
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψλ(x)ψλ(y) ¯̃ψλ(x)dxdye−iωλτn ,

g11 = − λ(λ− λ∗)τnD̄
[ ∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψλ(x)ψ̄λ(y) ¯̃ψλ(x)dxdyeiωλτn

+
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψ̄λ(x)ψλ(y) ¯̃ψλ(x)dxdye−iωλτn

]
,

g02 = − 2λ(λ− λ∗)τnD̄
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψ̄λ(x)ψ̄λ(y) ¯̃ψλ(x)dxdyeiωλτn ,

g21 = − λ(λ− λ∗)τnD̄
[

2
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψλ(x) ¯̃ψλ(x)H11(−1)(y)dxdy

+
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψ̄λ(y) ¯̃ψλ(x)H20(x)dxdyeiωλτn

+ 2
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψλ(y) ¯̃ψλ(x)H11(0)(x)dxdye−iωλτn ,

+
∫

Ω

∫
Ω

K(x, y)(ln wλ(y) + 1)ψ̄λ(x) ¯̃ψλ(x)H20(−1)(y)dxdy
]

.

(5.8)

Since there are H20(θ), H11(θ) in g21, we still need to compute them.
From (5.4), we obtain

Ḣ = Ẇt −Φ(ż, ˙̄z)T

= BτnWt + X0 J(Wt, 0)−Φ(ż, ˙̄z)T

= Bτn(H(z, z̄, θ) + Φ(z, z̄)T)−Φ(ż, ˙̄z)T + X0 J(Wt, 0)

= Bτn H(z, z̄, θ) + Bτn Φ(z, z̄)T −Φ(ż, ˙̄z)T + X0 J(Wt, 0)

= Bτn H(z, z̄, θ)−Φ(g, ḡ)T + X0 J(H(z, z̄, θ) + Φ(z, z̄)T, 0)

(5.9)

On the other hand, on the center manifold C0, from (5.5) and (5.7), we have

Ḣ = Hz ż + Hz ż

= [H20(θ)z + H11(θ)z](iωλτnz + g)

+ [W11(θ)z + W02(θ)z](−iωλτnz + g) + · · ·
(5.10)

Substituting the corresponding series into the above two equations and comparing the
coefficients, we obtain

(2iωλτn I −Bτn)H20(θ) =

{
−g20 p(θ)− g02 p(θ), θ ∈ [−1, 0),

−g20 p(0)− g02 p(0) + Jz2 , θ = 0.
(5.11)
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−Bτn H11(θ) =

{
−g11 p(θ)− g11 p(θ), θ ∈ [−1, 0),

−g11 p(0)− g11 p(0) + Jzz, θ = 0.
(5.12)

When θ ∈ [−1, 0), we have

H′20(θ) = 2iωλτnH20(θ) + g20 p(θ) + g02 p(θ).

Solving this equation, we obtain

H20(θ) =
ig20

ωλτn
p(θ) +

ig02
3ωλτn

p(θ) + E1e2iωλτnθ . (5.13)

When θ = 0,

(2iωλτn I −Bτn)E1e2iωλτnθ |θ=0 = Jz2(z, z̄)

= − 2λ(λ− λ∗)τnψλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iωλτn ,

then
∆(λ, 2iωλ, τn)E1 = 2λ(λ− λ∗)ψλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iωλτn .

Since 2iωλ is not the eigenvalue of Bτn(λ), hence

E1 = 2λ(λ− λ∗)∆−1(λ, 2iωλ, τn)

(
ψλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iωλτn

)
.

Substituting E1 into (5.13) gives H20(θ).
Similarly, we have

H′11(θ) = g11 p(θ) + g11 p(θ),

and
H11(θ) = −

ig11

ωλτn
p(θ) +

ig11
ωλτn

p̄(θ) + E2. (5.14)

When θ = 0,

−Bτn E2 = Jzz̄(z, z̄)

= − λ(λ− λ∗)τn

[
ψλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ̄λ(y)dyeiωλτn

+ ψ̄λ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iωλτn

]
.

Then we obtain

E2 = λ(λ− λ∗)∆−1(λ, 0, τn)

[
ψλ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψ̄λ(y)dyeiωλτn

+ ψ̄λ

∫
Ω

K(·, y)(ln wλ(y) + 1)ψλ(y)dye−iωλτn

]
.

Substituting E2 into (5.14) gives H11(θ).
By now, g20, g11, g02, g21 are all obtained. And we can compute the following values

(see [23]):

c1(0) =
i

2ωλτn

[
g11g20 − 2|g11|2 −

|g02|2
3

]
+

g21

2
,
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µ2 = −Re c1(0)
µ′(τn)

,

β2 = 2 Re c1(0),

T2 = − Imc1(0) + µ2Im(µ′(τn))

ωλ
.

We know that µ2 determines the directions of the Hopf bifurcation: if µ2 > 0 (µ2 < 0),
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for τ > τn (τ < τn); β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β2 < 0 (β2 > 0); and T2 determines the
period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0 (T2 < 0).

6 Numerical simulations

In this section, we give an example:
∂w(x, t)

∂t
= ∆w(x, t) + λw(x, t)

× (1− (λ− λ∗)
∫

Ω
K(x, y)w(y, t− τ) ln w(y, t− τ)dy), x ∈ (0, π), t > 0,

w(x, t) = 0, x = 0, π, t > 0.

(6.1)

We can see that λ∗ = 1 is the principal eigenvalue of the linear operator −∆ subject to the
Dirichlet boundary condition on the ∂Ω with Ω = (0, π) and the associated eigenvector is

φ(x) =
√

2
π sin x. It follows from Theorem 2.1 that system (6.1) with λ ∈ [1, λ∗] has a positive

nonhomogeneous steady state solution wλ.
We avoid the complex computation and only show two numerical simulations of system

(1.1). The numerical simulations with a homogeneous kernel K(x, y) = sin y and a nonhomo-
geneous kernel K(x, y) = (x− y)2 are shown in Figure 6.1 and in Figure 6.2, respectively. In
each figure, λ = 1.2, Ω = (0, π), d = 1, and the initial value is w(x, t) = 0.5 sin2 x. In each
case, the convergence to the spatially nonhomogeneous equilibrium wλ occurs when τ is less
than the first Hopf bifurcation point τ0 and an oscillatory pattern emerges for τ > τ0. Each
simulation verifies the occurrence of spatially nonhomogeneous temporal oscillation and the
spatial profiles of the periodic solutions are different due to the different dispersal kernels.

Figure 6.1: Spatially homogeneous kernel K(x, y) = sin y. (Left): τ = 1.1;
(Right): τ = 3.0.
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Figure 6.2: Spatially homogeneous kernel K(x, y) = (x − y)2. (Left): τ = 0.2;
(Right): τ = 1.2.
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