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Abstract. In this paper we give coefficient conditions for existence of a center in a family
of planar quartic polynomial differential systems. We also show that for all considered
center cases the Composition Condition is satisfied.

Keywords: quartic system, center condition, composition condition.

2010 Mathematics Subject Classification: 34C07, 34C05, 34C25, 37G15.

1 Introduction

We consider the planar analytic differential system

x′ = −y + p(x, y),

y′ = x + q(x, y)
(1.1)

with p and q being polynomials without constant and linear terms, and seek for conditions un-
der which the origin is a center (that is, the critical point at the origin is surrounded by closed
orbits). The derivation of conditions for a center is a difficult and long-standing problem in
the theory of nonlinear differential equations, however due to complexity of the problem nec-
essary and sufficient conditions are known only for a very few families of polynomial systems
(1.1). The conditions for a center in the quadratic system have been obtained in [11, 15, 16],
and in [18, 20] the problem has been solved for systems in which p and q are cubic polyno-
mials without quadratic terms. The problem is also solved for some families of cubic systems
and systems in the form of the linear center perturbed by homogeneous quartic and quintic
nonlinearities, see e.g. [1, 3, 5, 10, 12, 13, 17, 23] and references given there.

By the Poincaré–Lyapunov theorem [19, 21] system (1.1) has a center at the origin if and
only if it admits a first integral of the form

Φ(x, y) = x2 + y2 + ∑
i+j≥3

dijxiyj, (1.2)
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where the series converge in a neighbourhood of the origin in R2.
The problem of distinguishing between a center and a focus for polynomial systems (1.1)

has an analog for the corresponding periodic differential equations [17,26]. To see this we note
that the phase curves of (1.1) near the origin (0,0) in polar coordinates x = r cos θ, y = r sin θ

are determined by the equation

dr
dθ

=
cos θp(r cos θ, r sin θ) + sin θq(r cos θ, r sin θ)

1 + r−1(cos θq(r cos θ, r sin θ)− sin θp(r cos θ, r sin θ))
. (1.3)

Therefore, the planar vector field (1.1) has a center at (0, 0) if and only if all solutions r(θ) of
equation (1.3) near the solution r ≡ 0 are periodic, r(0) = r(2π). In such case it is said that
equation (1.3) has a center at r = 0.

If r−1(cos θq(r cos θ, r sin θ) − sin θp(r cos θ, r sin θ)) = f (θ) 6= −1, and p = ∑n
i+j=2 pijxiyj

and q = ∑n
i+j=2 qijxiyj, from (1.3) we get the polynomial equation

dr
dθ

= r2
n−2

∑
i=0

Ai(θ)ri, (1.4)

where Ai(θ) (i = 0, 1, 2, . . . , n− 2) are 2π-periodic functions. Thus, finding the conditions for
existence of a center at the origin of system (1.1) is equivalent to finding conditions which
fulfilment yields 2π-periodicity of all solutions of polynomial equation (1.4) near r = 0 [3].

If p and q are homogeneous polynomials of degree n, then the substitution

ρ =
rn−1

1 + rn−1(cos θq(cos θ, sin θ)− sin θp(cos θ, sin θ))

transforms equation (1.3) into the Abel equation

dρ

dθ
= ρ2(A1(θ) + A2(θ)ρ), (1.5)

where Ai(θ) (i = 1, 2) are 2π-periodic functions. Thus, finding the center conditions for (1.1)
is equivalent to studying when Abel equation (1.5) has a center at ρ = 0. This problem has
been investigated in [2, 10, 26] and some other works.

In this paper, we study the quartic differential system

x′ = −y + x(P1(x, y) + P2(x, y) + P3(x, y)) = P(x, y),

y′ = x + y(P1(x, y) + P2(x, y) + P3(x, y)) = Q(x, y),
(1.6)

where Pn(x, y) = ∑i+j=n pijxiyj (n = 1, 2, 3), pi,j (i, j = 0, 1, 2, 3) are real constants. We give the
necessary and sufficient conditions for the origin of (1.6) to be a center when p2

10 + p2
01 = 0.

For the case p2
10 + p2

01 6= 0, we obtain conditions which are sufficient and most probably,
are necessary for the origin of system (1.6) to be a center. However, we can not prove their
necessity due to computational difficulties arising in the investigation of the zero set of the
focus quantities of system (1.6). We apply the obtained results to prove that for all obtained
center cases the Composition Condition [2] holds for the corresponding periodic differential
equation

dr
dθ

= r2(P1(cos θ, sin θ) + P2(cos θ, sin θ)r + P3(cos θ, sin θ)r2). (1.7)
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2 Center conditions for system (1.6)

Alwash and Lloyd [2, 3] proved the following statement.

Lemma 2.1 ([2, 3]). If there exists a differentiable function u of period 2π such that

A1(θ) = u′(θ)Â1(u(θ)), A2(θ) = u′(θ)Â2(u(θ))

for some continuous functions Â1 and Â2, then the Abel differential equation

dr
dθ

= A1(θ)r2 + A2(θ)r3

has a center at r ≡ 0.

The condition in Lemma 2.1 is called the Composition Condition. This is a sufficient but not
a necessary condition for r = 0 to be a center [1].

The following statement presents a generalization of Lemma 2.1.

Lemma 2.2. If there exists a differentiable function u of period 2π such that

Ai(θ) = u′ Âi(u), (i = 1, 2, . . . , n) (2.1)

for some continuous functions Âi (i = 1, 2, . . . , n), then the differential equation

dr
dθ

= r
n

∑
i=1

Ai(θ)ri (2.2)

has a center at r = 0.

Proof. For simplicity of notations we present the proof for the case n = 3. The proof for the
general case goes similarly.

Let r(θ, c) be the solution of (2.2) such that r(0, c) = c (0 < c� 1). We write

r(θ, c) =
∞

∑
n=1

an(θ)cn,

where a1(0) = 1 and an(0) = 0 for n > 1. The origin is a center if and only if r(θ + 2π, c) =
r(θ, c), i.e., a1(2π) = 1, an(2π) = 0 (n = 2, 3, 4, . . . ) [2, 3].

Substituting r(θ, c) into (2.2) we obtain

∞

∑
n=1

a′n(θ)c
n = A1(θ)

(
∞

∑
n=1

an(θ)cn

)2

+ A2(θ)

(
∞

∑
n=1

an(θ)cn

)3

+ A3(θ)

(
∞

∑
n=1

an(θ)cn

)4

.

Equating the corresponding coefficients of cn yields

a′1 = 0, a1(0) = 1;

a′2 = a2
1 A1, a2(0) = 0;

a′3 = 2a1a2A1 + a3
1A2, a3(0) = 0;

a′n = A1(θ) ∑
i+j=n

aiaj + A2(θ) ∑
i+j+k=n

aiajak + A3(θ) ∑
i+j+k+l=n

aiajakal , an(0) = 0,

(n = 4, 5, 6, . . . ).

(2.3)
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Solving the first equation of (2.3), we get a1(θ) = 1. Substituting it into the second equation
and solving it we obtain

a2(θ) =
∫ θ

0
A1(θ)dθ =

∫ θ

0
u′(θ)Â1(u)dθ =

∫ θ

0
Â1(u)du = â2(u), a2(2π) = 0.

Substituting a1 = 1, a2(θ) = â2(u) into the third equation of (2.3) and integrating it we have

a3(θ) =
∫ θ

0
u′(θ)(2â2(u)Â1(u) + Â2(u))dθ =

∫ θ

0
(2â2(u)Â1(u) + Â2(u))du = â3(u),

a3(2π) = 0.

Suppose that when n = m− 1, the function an(θ) = ân(u) is a 2π-periodic function and
an(2π) = 0. We prove that when n = m the function an(θ) = ân(u) is a 2π-periodic function
and an(2π) = 0.

Indeed, substituting a1(θ) = 1, an(θ) = ân(u) (n = 1, 2, . . . , m− 1) into (2.3) and integrat-
ing it we get

am(θ) =
∫ θ

0
u′(θ)(Â1(u) ∑

i+j=m
âi(u)âj(u) + Â2(u) ∑

i+j+k=m
âi(u)âj(u)âk(u)

+ Â3(u) ∑
i+j+k+l=m

âi(u)âj(u)âk(u)âl(u))dθ

=
∫ θ

0
(Â1(u) ∑

i+j=m
âi(u)âj(u) + Â2(u) ∑

i+j+k=m
âi(u)âj(u)âk(u)

+ Â3(u) ∑
i+j+k+l=m

âi(u)âj(u)âk(u)âl(u))du = ân(u).

Since u(θ) is a 2π-periodic function, âm(u) is a 2π-periodic function and am(2π) = 0. By
mathematical induction, the functions an(θ) (n = 2, 3, 4 . . . ) are 2π- periodic and an(2π) = 0
(n = 2, 3, 4, . . . ). Thus, the r = 0 is a center of (2.2).

We now consider the center problem for quartic system (1.6).

Theorem 2.3. If p2
10 + p2

01 6= 0, then the origin is a center for (1.6) if the following condition is satisfied

p20 + p02 = 0,

p20(p2
01 − p2

10)− p01 p10 p11 = 0,

3(p03 p10 − p30 p01) + p10 p21 − p01 p12 = 0,

p30 p3
01 − p03 p3

10 + p10 p01(p12 p10 − p21 p01) = 0.

(2.4)

Proof. In polar coordinates x = r cos θ , y = r sin θ system (1.6) has the form

dr
dt

= r2(P1 + P2r + P3r2),
dθ

dt
= 1,

where
Pk = Pk(cos θ, sin θ) = ∑

i+j=k
pij cosi θ sinj θ, (k = 1, 2, 3).

From this system we get equation (1.7). The origin is a center for system (1.6) if and only if
r = 0 is a center for equation (1.7) [1, 17].
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Following [7] to compute the necessary conditions for existence of a first integral of the
form (1.2) for system (1.6) we look for a function

Φ2m+1(x, y) = x2 + y2 +
2m+1

∑
i+j=3

dijxiyj (2.5)

such that
∂Φ2m+1

∂x
P +

∂Φ2m+1

∂x
Q = g1(p)x4 + g2(p)x6 + . . . , (2.6)

where p stands for the 9-tuple of the parameters of system (1.6), that is,

(p) = (p10, p01, p20, p11, p02, p30, p21, p12, p03).

Equating the coefficients of the same monomials on both sides of (2.6) we compute the coeffi-
cients dij(p) in (2.5) and the polynomials g1(p), g2(p), . . . in (2.6). We call gi(p) (i = 1, 2, 3, . . . )
the focus quantities of system (1.6). Using the computer algebra system Mathematica we
have computed for system (1.6) the first 8 focus quantities, where the first three of them are:

g1 = p20 + p02;

g2 = 169p2
01 p02 − 18p03 p10 + 11p02 p2

10 + 4p02 p11 + 6p01 p10 p11 + 6p01 p12

+ 163p2
01 p20 + 17p2

10 p20 + 4p11 p20 − 6p10 p21 + 18p01 p30;

g3 = 88383p4
01 p02 − 1230p3

02 − 8944p01 p02 p03 − 6688p01 p2
02 p10 − 10098p2

01 p03 p10

+ 8118p2
01 p02 p2

10 − 414p03 p3
10 + 243p02 p4

10 + 6497p2
01 p02 p11 + 3366p3

01 p10 p11

+ 198p03 p10 p11 − 237p02 p2
10 p11 + 234p01 p3

10 p11 − 18p02 p2
11 − 18p01 p10 p2

11 + 3366p3
01 p12

− 336p02 p10 p12 − 54p01 p2
10 p12 − 18p01 p11 p12 + 85017p4

01 p20 − 2274p2
02 p20 − 9088p01 p03 p20

− 4128p01 p02 p10 p20 + 11250p2
01 p2

10 p20 + 477p4
10 p20 + 6515p2

01 p11 p20 − 255p2
10 p11 p20

− 18p2
11 p20 − 192p10 p12 p20 − 1218p02 p2

20 + 2560p01 p10 p2
20 − 174p3

20 − 3872p01 p02 p21

− 3078p2
01 p10 p21 − 234p3

10 p21 + 18p10 p11 p21 − 4016p01 p20 p21 + 9810p3
01 p30

− 1248p02 p10 p30 + 702p01 p2
10 p30 + 90p01 p11 p30 − 1104p10 p20 p30 = 0;

The size of the polynomial gi (i = 4, 5, 6, 7, 8) grows exponentially, so we do not present
them here, but the interested reader can compute the quantities using any available computer
algebra system.

The system of algebraic equations

g1 = g2 = · · · = g8 = 0, (2.7)

gives us the necessary conditions for the origin of (1.6) to be a center. To find the conditions
we have to find the irreducible decomposition of the variety of the ideal I generated by the
focus quantities,

I = 〈g1, g2, . . . , g8〉. (2.8)

Since the decomposition of the variety V(I) of the ideal I is not possible over the field of ra-
tional numbers due to the complexity of calculations, we employ the computational approach
based on modular calculations described in [22].

We first compute the minimal associate primes of the ideal I over the field Z32003 using
the routine minAssGTZ [9] of the computer algebra system Singular which is based on the
algorithm of [13]. Computations yield that the minimal associate primes of I are the ideals
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I1, I2, I3 in the ring Z32003[p10, p01, p20, p11, p02, p30, p21, p12, p03] given in the appendix. Then,
the rational reconstruction algorithm of [25] applied to I1, I2, I3 gives the polynomials defined
by the following conditions, respectively.

Condition 1:
p2

01 −
1
4

p11 = 0; (2.9)

p2
10 +

1
4

p11 = 0; (2.10)

p02 + p20 = 0; p12 + 3p30 = 0; p03 +
1
3

p21 = 0;

2p01 p02 + p10 p11 = 0; −2p02 p10 + p01 p11 = 0;
1
2

p02 + p01 p10 = 0;

p2
02 +

1
15

p01 p21 −
1
5

p10 p30 = 0; p02 p11 +
2

15
p10 p21 +

2
5

p01 p30 = 0;

p2
11 −

4
15

p01 p21 +
4
5

p10 p30 = 0; p02 p10 p21 −
1
30

p2
21 − 3p01 p02 p30 −

3
10

p2
30 = 0.

Condition 2:
p02 = p20 = p11 = p10 = p01 = 0.

Condition 3:
p02 + p20 = 0; (2.11)

p2
01 p02 − p02 p2

10 + p01 p10 p11 = 0; (2.12)

p03 p10 −
1
3

p01 p12 +
1
3

p10 p21 − p01 p30 = 0; (2.13)

p01 p2
10 p12 −

3
2

p2
01 p10 p21 +

1
2

p3
10 p21 +

3
2

p3
01 p30 −

3
2

p01 p2
10 p30 = 0; (2.14)

p02 p2
12 − 3p02 p03 p21 +

1
2

p11 p12 p21 − p02 p2
21 −

9
2

p03 p11 p30 + 3p02 p12 p30 = 0;

p02 p10 p12 − p01 p02 p21 +
1
2

p10 p11 p21 −
3
2

p01 p11 p30 = 0;

3p02 p2
03 + p03 p11 p12 + p02 p03 p21 +

1
2

p11 p12 p21

+
3
2

p03 p11 p30 − p02 p12 p30 + p11 p21 p30 − 3p02 p2
30 = 0;

3p01 p02 p03 + p01 p11 p12 +
1
2

p10 p11 p21 − 3p02 p10 p30 +
3
2

p01 p11 p30 = 0;

p2
02 p03 p12 +

3
2

p02 p03 p11 p21 +
1
2

p02 p11 p2
21 +

3
2

p03 p2
11 p30

− 1
2

p02 p11 p12 p30 − p2
02 p21 p30 +

1
2

p2
11 p21 p30 −

3
2

p02 p11 p2
30 = 0;
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p01 p2
02 p12 − p2

02 p10 p21 +
3
2

p01 p02 p11 p21 −
3
2

p02 p10 p11 p30 +
3
2

p01 p2
11 p30 = 0,

p03 p3
12 −

9
2

p2
03 p12 p21 +

1
2

p3
12 p21 − 3p03 p12 p2

21 −
1
2

p12 p3
21 +

27
2

p3
03 p30

+
9
2

p03 p2
12 p30 + 3p2

12 p21 p30 −
9
2

p03 p2
21 p30 − p3

21 p30 +
9
2

p12 p21 p2
30 −

27
2

p03 p3
30 = 0;

p01 p3
12 −

9
2

p01 p03 p12 p21 +
1
2

p10 p2
12 p21 −

3
2

p01 p12 p2
21 +

27
2

p01 p2
03 p30

+
9
2

p01 p2
12 p30 −

9
2

p01 p03 p21 p30 + 3p10 p12 p21 p30 − 3p01 p2
21 p30 +

9
2

p10 p21 p2
30 −

27
2

p01 p3
30 = 0;

p01 p10 p2
12 −

3
2

p2
01 p12 p21 +

1
2

p2
10 p12 p21 +

9
2

p2
01 p03 p30 +

3
2

p01 p10 p12 p30

−3p2
01 p21 p30 +

3
2

p2
10 p21 p30 −

9
2

p01 p10 p2
30 = 0;

2p3
02 p03 p21 + p2

02 p11 p12 p21 +
1
2

p02 p2
11 p2

21 + 3p2
02 p03 p11 p30

− 2p3
02 p12 p30 + p02 p2

11 p12 p30 − 2p2
02 p11 p21 p30 +

1
2

p3
11 p21 p30 −

3
2

p02 p2
11 p2

30 = 0;

p3
02 p2

03 −
1
2

p02 p03 p2
11 p21 −

1
4

p02 p2
11 p2

21 −
1
2

p03 p3
11 p30

+ p2
02 p11 p21 p30 −

1
4

p3
11 p21 p30 − p3

02 p2
30 +

3
4

p02 p2
11 p2

30 = 0;

p01 p3
02 p03 +

1
2

p2
02 p10 p11 p21 −

1
2

p01 p02 p2
11 p21

− p3
02 p10 p30 +

1
2

p01 p2
02 p11 p30 +

1
2

p02 p10 p2
11 p30 −

1
2

p01 p3
11 p30 = 0.

Let J1, J2 and J3 be the ideals defined by polynomials on the left hand sides of Conditions
1, 2, 3, respectively. Following [22] in order to check the correctness of obtained Conditions 1,
2 and 3 we compute the ideal

J = J1 ∩ J2 ∩ J3, (2.15)

which defines the union of the varieties V(J1), V(J2) and V(J3). Then we should check that
V(J) = V(I). According to the Radical Membership Test (see e.g. [23]), to verify the inclusion

V(J) ⊃ V(I) (2.16)

it is sufficient to check that the Gröbner bases of all ideals 〈J, 1−wgk〉 (where k = 1, . . . , 8 and
w is a new variable) computed over Q are {1}. The computations show that this is the case.

To check the opposite inclusion,
V(J) ⊂ V(I), (2.17)
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it is sufficient to check that all Gröbner bases of the ideals 〈I, 1−wti〉 (where the polynomials
ti form a basis of J) computed over Q are equal to {1}. Unfortunately, we were not able
to perform these computations over Q using our computational facilities, however we have
checked that all the bases are {1} over few fields of finite characteristic. It yields that the list
of Conditions 1, 2 and 3 give the complete decomposition of the variety V(I) of the ideal I
in the affine space Q9 with high probability [6] (since (2.16) holds, the obtained Conditions
1, 2 and 3 define correct components of V(I), but if (2.17) does not holds then the variety
can have additional components – in other words, Conditions 1, 2 and 3 are some necessary
conditions for a center, but we cannot prove that they represent the complete list of necessary
center conditions).

We now examine Conditions 1, 2 and 3 more carefully. From equations (2.9) and (2.10) it
follows that

p11 =
1
4

p2
10 = −1

4
p2

01,

which implies that p10 = p01 = 0, i.e., P1 = 0, which contradicts the hypothesis of the present
theorem. Clearly, Condition 2 also implies P1 = 0 contradicting the hypothesis of the theorem
as well. Thus, we have to consider only Condition 3.

Let f1, f2, f3, f4 be polynomials on the left hand sides of (2.11), (2.12), (2.13) and (2.14),
respectively. It is easy to check that the condition

f1 = f2 = f3 = f4 = 0, p2
10 + p2

02 6= 0 (2.18)

yields condition (2.4). To verify this we consider the ideal

Q = 〈1− w(p2
10 + p2

01), f1, f2, f3, f4〉,

where w is a new variable. Computing with the routine eliminate (which is based on the
Elimination Theorem, see e.g. [23]) of Singular we find that the first elimination ideal of Q
is the same as the ideal generated by the polynomials on the right hand side of (2.4). This
means, that (2.18) yields condition (2.4).

In the following, using Lemma 2.2 we will prove that if condition (2.4) is fulfilled then the
origin is a center for (1.6).

Case 1. If p10 p01 6= 0 by condition (2.4) we get

P2 = − p20

p01 p10
P1P̄1, P̄1 = p10 sin θ − p01 cos θ, P1 =

dP̄1

dθ
,

and
P3 = (k0 + k1P̄2

1 )P1,

where

k0 =
1

4p10 p01
(p30 p01 + p03 p10 + p21 p10 + p12 p01), k1 =

1
2p01 p3

10
(p01 p30 − p10 p21).

By Lemma 2.2, r = 0 is a center for equation (1.7), i.e., the origin is a center for system (1.6).

Case 2. If p10 = 0, p01 6= 0, then P1 = p01 sin θ, P̄1 = −p01 cos θ. By condition (2.4) we obtain
p20 = 0, p12 = p30 = 0, so

P2 = − p11

p2
01

P1P̄1,
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and

P3 = P1(k0 + k1P̄2
1 ), k0 =

p03

p01
, k1 =

p21 − p03

p3
01

.

By Lemma 2.2, the origin of system (1.6) is a center.

Case 3. If p01 = 0, p10 6= 0, then P1 = p10 cos θ, P̄1 = p10 sin θ. Using condition (2.4) we get
p20 = 0, p21 = p03 = 0, so

P2 =
p11

p2
10

P1P̄1,

P3 = P1(k0 + k1P̄2
1 ), k0 =

p30

p10
, k1 =

p12 − p30

p3
10

.

By Lemma 2.2, the origin of system (1.6) is a center.
In summary, condition (2.4) is sufficient for the origin to be a center of (1.6). The proof of

the present theorem is finished.

Conjecture 2.4. If p2
10 + p2

01 6= 0, the origin is a center for (1.6) if and only if condition (2.4) is
satisfied.

As it follows from the proof of Theorem 2.3, Conjecture 2.4 is true if inclusion (2.17) holds.
As it is mentioned in the proof of the theorem to check the inclusion it is sufficient to check
that Gröbner bases of the ideals 〈I, 1− wti〉 (where ti are the polynomials defining a basis of
J, and J and I are ideals defined by (2.15) and (2.8), respectively) computed over Q are equal
to {1}. We were not able to complete our computations of the Gröbner bases over the field
Q, however we have checked that all bases are {1} computing over a few finite fields. This
indicates that Conjecture 2.4 should be true [6].

Corollary 2.5. If p2
10 + p2

01 6= 0, then r = 0 is a center of equation (1.7), if and only if

P2 = kP1P̄1, P3 = P1(k0 + k1P̄2
1 ), (2.19)

where k, k0, k1 are constants, P1 = p10 cos θ + p01 sin θ, P̄1 = p10 sin θ − p01 cos θ.

Proof. Under the condition of the corollary if the origin is a center for system (1.6), then
condition (2.4) is satisfied. According to the proof of Theorem 2.3, we know that then the
relation (2.19) holds, this means that condition (2.19) is necessary for the origin to be a center
of (1.6). On the other hand, by Lemma 2.2, condition (2.19) is sufficient for r = 0 of (1.7)
(i.e., the origin of (1.6)) to be a center.

If P3 = 0 then simple computations show that (2.19) holds, so, from Theorem 2.3 and its
proof we have the following result.

Corollary 2.6. The origin is a center of system

x′ = −y + x(P1(x, y) + P2(x, y)),

y′ = x + y(P1(x, y) + P2(x, y)),

(where Pn(x, y) = ∑i+j=n pijxiyj (n = 1, 2), pi,j (i, j = 0, 1, 2) are real constants), if and only if

p20 + p02 = 0;

p20(p2
01 − p2

10)− p01 p10 p11 = 0.
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This result is the same as Alwash’s theorem in [1].

Theorem 2.7. If p2
10 + p2

01 = 0, p2
20 + p2

11 + p2
02 6= 0, the origin is a center for system (1.6), if and

only if the following condition is satisfied

p20 + p02 = 0;

2p20(p2
12 − p2

21 + 3p12 p30 − 3p21 p03) + p11(9p30 p03 − p12 p21) = 0;

2p20(3p2
03 − 3p2

30 + p03 p21 − p12 p30)− p11(2p03 p12 + 2p30 p21 + p12 p21 + 3p03 p30) = 0;

2p2
20(p12 p03 − p21 p30)− p20 p11(3p03 p21 − p12 p30 + p2

21 − 3p2
30)

+p2
11(3p30 p03 + p21 p30) = 0;

4p3
20(p2

30 − p2
03) + 4p2

20 p11 p21 p30 + p20 p2
11(p2

21 + 2p03 p21 − 3p2
30)

−p3
11(2p30 p03 + p21 p30) = 0.

(2.20)

Proof. Since p2
10 + p2

01 = 0, that is, p10 = p01 = 0, system (1.6) becomes

x′ = −y + x(P2(x, y) + P3(x, y)),

y′ = x + y(P2(x, y) + P3(x, y)),
(2.21)

where P2(x, y) = p20x2 + p11xy + p02y2, P3(x, y) = p30x3 + p21x2y + p12xy2 + p03y3, pij (i, j =
0, 1, 2, 3) are real parameters.

In this case we can easily verify that inclusion (2.17) holds, it means, that Conditions 1, 2
and 3 in the proof of Theorem 2.3, give the complete irreducible decomposition of the variety
V(I) of ideal (2.8). Thus, since Condition 3 is the necessary condition for the origin of (2.21)
to be a center, the following conditions hold

p20 + p02 = 0; (2.22)

2p20(p2
12 − p2

21 + 3p12 p30 − 3p21 p03) + p11(9p30 p03 − p12 p21) = 0; (2.23)

2p20(3p2
03 − 3p2

30 + p03 p21 − p12 p30)− p11(2p03 p12 + 2p30 p21 + p12 p21 + 3p03 p30) = 0; (2.24)

2p2
20(p12 p03 − p21 p30)− p20 p11(3p03 p21 − p12 p30 + p2

21 − 3p2
30)

+ p2
11(3p30 p03 + p21 p30) = 0; (2.25)

4p3
20(p2

30 − p2
03) + 4p2

20 p11 p21 p30 + p20 p2
11(p2

21 + 2p03 p21 − 3p2
30)

− p3
11(2p30 p03 + p21 p30) = 0; (2.26)

2(p03 p3
12 − p30 p3

21) + (p12 p21 + 9p30 p03)(p2
12 − p2

21)

+ 6p12 p21(p12 p30 − p21 p03) + 9(p2
30 − p2

03)(p12 p21 − 3p30 p03) = 0; (2.27)

4p3
20(p12 p30 − p21 p03) + 2p2

20 p11(p12 p21 + 3p30 p03 − 2p21 p30)

+ p20 p2
11(3p2

30 − p2
21 − 2p12 p30) + p3

11 p21 p30 = 0. (2.28)
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From (2.23) and (2.24) it follows that relation (2.27) is the identity. Using (2.24), (2.25) and
(2.26) we derive that relation (2.28) holds. It is not difficult to see that relations (2.22)–(2.26)
are the same as condition (2.20). Thus, condition (2.20) is the necessary condition for origin to
be a center of system (2.21).

Another way to verify that condition (2.20) of the theorem is the necessary condition for
existence of a center is as follows.

Let Q be the ideal generated by the polynomials given in condition (2.20). With eliminate

of Singular we have computed the first elimination ideals Q̃1 and J̃1 of the ideals

Q̃ = 〈1− w(p2
20 + p2

11 + p2
02), Q〉 and J̃ = 〈1− w(p2

20 + p2
11 + p2

02), J〉

in the ring R [w, p20, p11, p02, p30, p21, p12, p03] (where J is defined by (2.15)) and with reduce of
Singular verified that Q̃1 = J̃1. That means that the condition of the present theorem is the
necessary condition for existence of a center at the origin of system (2.21).

We now prove that this condition is also the sufficient center condition. The proof is split
into five cases.

Case 1. We prove that if p11 = 0, p20 6= 0, then under the condition of the present theorem the
origin of (2.21) is a center.

Since p11 = 0, p20 6= 0, P2 = p20(cos2 θ− sin2 θ) and relations of (2.20) are equivalent to the
following equations

p20 + p02 = 0; (2.29)

p2
12 − p2

21 + 3(p12 p30 − p21 p03) = 0; (2.30)

3(p2
03 − p2

30) + p03 p21 − p30 p12 = 0; (2.31)

p12 p03 − p21 p30 = 0; (2.32)

p2
30 − p2

03 = 0. (2.33)

From (2.30)–(2.33) we get p30 = ±p03, p21 = ±p12.

10. If p30 = p03, p12 = p21, then P3 = 1
2 u′(p30 + p21 + (p30 − p21)u2)), P2 = p20u′u, u =

sin θ − cos θ.

20. If p30 = p03, p12 = −p21, by (2.32) we have p30 p21 = 0.

If p30 = 0, then P3 = p21
2 u′(u2 − 1), P2 = p20u′u, u = sin θ + cos θ.

If p21 = 0, then P3 = p30
2 u′(1 + u2), P2 = p20u′u, u = sin θ − cos θ.

30. If p30 = −p03, p12 = −p21, then P3 = 1
2 u′(p30 − p21 + (p21 + p30)u2), P2 = p20u′u, u =

sin θ + cos θ.

40. If p30 = −p03, p12 = p21, by (2.32) we get p30 p21 = 0.

If p30 = 0, then P3 = p21
2 u′(1− u2), P2 = p20u′u, u = sin θ − cos θ.

If p21 = 0, then P3 = p30
2 u′(1 + u2), P2 = p20u′u, u = sin θ + cos θ.

By Lemma 2.2 the origin of (2.21) is a center.

Case 2. We now show that if p20 = 0, p11 6= 0, under the condition of the present theorem the
origin of (2.21) is a center.

Since p20 = 0, p11 6= 0, we have that P2 = p11 cos θ sin θ and condition (2.20) is equivalent
to the following relations

p30 p03 = p12 p21 = p21 p30 = p03 p12 = 0.
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10. If p21 6= 0, then p12 = p30 = 0, P3 = −u′(p03 + (p21 − p03)u2), P2 = −p11u′u, u = cos θ.

20. If p12 6= 0, then p21 = p03 = 0, P3 = u′(p30 + (p12 − p30)u2), P2 = p11u′u, u = sin θ.

By Lemma 2.2 the origin of (2.21) is a center.

Case 3. We check that if p11 p20 6= 0, p30 p21 − p03 p12 = 0 then under condition (2.20) the origin
of (2.21) is a center.

Subcase a. If p30 p03 6= 0, by p30 p21 − p03 p12 = 0, we get p21 = kp03, p12 = kp30. Substituting it
into (2.23)–(2.26) we obtain

(k + 3)(2p20k(p2
30 − p2

03) + (3− k)p11 p30 p03) = 0; (2.34)

(k + 3)(2p20(p2
03 − p2

30)− (k + 1)p11 p30 p03) = 0; (2.35)

(k + 3)(p11 p30 p03 − p20(kp2
03 − p2

30)) = 0; (2.36)

4p3
20(p2

30− p2
03) + 4kp2

20 p11 p30 p03 + p20 p2
11(k

2 p2
03 + 2kp2

03− 3p2
30)− (k + 2)p3

11 p30 p03 = 0. (2.37)

1∗. If k = −3, then relations (2.34)–(2.36) are identities. Substituting k = −3 into (2.37) we
obtain

µ3 p30 p03 − 3µ2(p2
30 − p2

03)− 12µp30 p03 + 4(p2
30 − p2

03) = 0, µ :=
p11

p20
. (2.38)

Since p21 = −3p03, p12 = −3p30,

P3 = p30 cos3 θ − 3p03 cos2 θ sin θ − 3p30 cos θ sin2 θ + p03 sin3 θ,

P2 = p20(cos θ − δ sin θ)

(
cos θ +

1
δ

sin θ

)
, δ :=

−µ +
√

µ2 + 4
2

, µ = δ−1 − δ.

By (2.38), we have

((3δ2 − 1)p03 − δ(δ2 − 3)p30)(δ(3− δ2)p03 − (3δ2 − 1)p30) = 0.

If (3δ2 − 1)p03 − δ(δ2 − 3)p30 = 0, then cos θ − δ sin θ/P3 and

P2 = δ−1 p20u′u, P3 =
p30

1− 3δ2 u′(δ2 + 1− 4u2), u := sin θ + δ cos θ,

If δ(3− δ2)p03 − (3δ2 − 1)p30 = 0, then cos θ + δ−1 sin θ/P3 and

P2 = −δp20u′u, P3 =
p30

δ2 − 3
u′(δ2 + 1− 4δ2u2), u = sin θ − δ−1 cos θ.

On the other hand, we can prove that δ2 6= 3 and δ2 6= 1
3 . Otherwise, if δ2 = 3 or δ2 = 1

3 , we
get µ2 = 4

3 , substituting it into (2.41) we have p03 p30 = 0, this is inconsistent with the previous
hypothesis, so δ2 6= 3 and δ2 6= 1

3 .
By Lemma 2.2, the origin of (2.21) is a center.

2∗. If k 6= −3, (2.34)–(2.36) imply

2p20k(p2
30 − p2

03) + (3− k)p11 p30 p03 = 0; (2.39)

2p20(p2
03 − p2

30)− (k + 1)p11 p30 p03 = 0; (2.40)

p11 p30 p03 − p20(kp2
03 − p2

30) = 0. (2.41)
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Using (2.39) and (2.40) we get (k + 3)(k− 1)p11 p30 p03 = 0, which implies k = 1. Thus, p21 =

p03, p12 = p30, and (2.39)–(2.41) are equivalent to

p11 p30 p03 + p20(p2
30 − p2

03) = 0. (2.42)

Equation (2.37) can be reduced to

(p11 p30 p03 + p20(p2
30 − p2

03))(3p2
11 − 4p2

20) = 0. (2.43)

By (2.42) we see that relation (2.43) holds.
Thus,

P3 = p30 cos θ + p03 sin θ, P2 = − p20

p30 p03
P3P̄3, P̄3 = p30 sin θ − p03 cos θ.

By Lemma 2.2, the origin point of (2.21) is a center.

Subcase b. If p30 = 0, p03 6= 0, then p12 = 0 and condition (2.20) yields

p21 = −3p03, 3p2
11 = 4p2

20,

which implies that µ2 = ( p11
p20

)2 = 4
3 , so δ = 1√

3
or δ =

√
3.

If δ =
√

3, then

P2 = −
√

3p20uu′, P3 = −
√

3p03

2
u′(1− 3u2), u = sin θ −

√
3

3
cos θ.

If δ = 1√
3
, then

P2 =
√

3p20u′u, P3 =

√
3p03

2
u′(1− 3u2), u = sin θ +

√
3

3
cos θ.

By Lemma 2.2 the origin of (2.21) is a center.

Subcase c. If p03 = 0, p30 6= 0, then p21 = 0 and condition (2.20) implies

p12 = −3p30, 3p2
11 = 4p2

20.

It follows that µ2 = ( p11
p20

)2 = 4
3 , so δ =

√
3 or δ = 1√

3
.

If δ =
√

3, then

P2 =

√
3p20

3
uu′, P3 = − p30

2
u′(1− u2), u = sin θ +

√
3 cos θ.

If δ = 1√
3
, then

P2 = −
√

3p20u′u, P3 = −1
2

p30u′(1− u2), u = sin θ −
√

3 cos θ.

By Lemma 2.2 the origin of (2.21) is a center.

Subcase d. If p30 = p03 = 0, then from condition (2.20) it follows that p2
12 + p2

21 = 0. This implies
P3 ≡ 0, and the equation (1.7) becomes r′ = P2r3, since p20 + p02 = 0. Then, r(θ + 2π) = r(θ),
that is, the origin of (2.21) is a center.



14 Z. Zhou and V. G. Romanovski

Case 4. We show that if p11 p20 6= 0, p20 + p02 = 0 and p30 p21 − p03 p12 6= 0, then

P3 = u′(λ0 + λ1u2), u = sin θ + δ cos θ

or
P3 = v′(λ̃0 + λ̃1v2), v = sin θ − δ−1 cos θ

if and only if,
p30k2(3k2

1 − k2
2) + p03k1(k2

1 − 3k2
2) + k1k2(k2

2 − k2
1) = 0 (2.44)

and
k1k2µ− k2

2 + k2
1 = 0, (2.45)

where

µ =
p11

p20
, δ =

1
2

(
−µ +

√
µ2 + 4

)
, k1 = p12 + 3p30, k2 = p21 + 3p03

and λ1, λ2, λ̃1, λ̃2 are constants.
To verify the claim we first note that by p20 + p02 = 0 we have

P2 = (cos θ − δ sin θ)(cos θ + δ−1 sin θ),

where δ = 1
2 (−µ +

√
µ2 + 4), µ = p11

p20
.

Since p30 p21 − p03 p12 6= 0, we have that (p12 + 3p30)2 + (p21 + 3p03)2 6= 0.

Subcase a. If p12 + 3p30 6= 0, then P3 = u′(λ0 + λ1u2), u = sin θ + δ cos θ if and only if

p30δ3 + p21δ2 + p12δ + p03 = 0, δ = − k2

k1
.

That is,
p30k3

2 − p21k2
2k1 + p12k2k2

1 − p03k3
1 = 0;

k1k2µ + k2
1 − k2

2 = 0.

These equalities are equivalent to (2.34) and (2.45).

Subcase b. If p21 + 3p03 6= 0, then P3 = v′(λ0 + λ1v2), v = sin θ − δ−1 cos θ, if and only if

p30 − p21δ + p12δ2 − p03δ3 = 0, δ =
k1

k2
.

Thus,
p30k3

2 − p21k2
2k1 + p12k2k2

1 − p03k3
1 = 0;

k1k2µ + k2
1 − k2

2 = 0.

Therefore, P3 = u′(λ0 + λ1u2) or P3 = v′(λ̃0 + λ̃1v2), if and only if relations (2.44) and
(2.45) are held.

Case 5. Finally, we check that if p11 p20 6= 0 and p30 p21 − p03 p12 6= 0, then under the condition
(2.20) the origin of (2.21) is a center.

Denote k1 = p12 + 3p30, k2 = p21 + 3p03. Then relations (2.23) and (2.24) can be rewritten
as

2(k2
1 − k2

2)− 6(k1 p30 − k2 p03) = µ(k1k2 − 3p03k1 − 3p30k2); (2.46)
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2(p03k2 − p30k1) = µ(k1k2 − p03k1 − k2 p30). (2.47)

Substituting (2.50) into (2.49) we get

k2
2 − k2

1 = µk1k2,

that is, relation (2.45) holds. Form this relation, since p11 p20 6= 0 and p30 p21 − p03 p12 6= 0, it

follows that k1k2 6= 0 and µ =
k2

2−k2
1

k1k2
. Substituting the latter relation into (2.47) we obtain

p30(3k2k3
1 − k3

2) + p03(k3
1 − 3k1k2

2) + k1k2(k2
2 − k2

1) = 0.

This means that relation (2.43) holds. Thus, as it was shown in the study of Case 4 the
conditions of Lemma 2.2 are satisfied. Hence, the origin of (2.21) is a center.

Summarizing, condition (2.20) is the necessary and sufficient condition for the origin of
system (2.21) to be a center. Therefore, the proof of the present theorem is finished.

Remark 2.8. If p10 = p01 = p20 = p11 = p02 = 0, then equation (1.7) becomes r′ =

P3(cos θ, sin θ)r4. Since P3 is a cubic polynomial in cos θ and sin θ, we have that∫ 2π

0
P3(cos θ, sin θ)dθ = 0,

so r(θ + 2π) = r(θ). Therefore, r = 0 is a center of (1.7).

To summarize, we have shown that in all center cases considered in this paper the Com-
position Condition holds. Thus, we have the following result.

Corollary 2.9. If the origin is a center for system (1.7) satisfying one of Theorems 2.3, 2.7, or Corol-
lary 2.6, then P1, P2 and P3 satisfy Composition Condition (2.1) of Lemma 2.2.
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