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1 Introduction

This paper investigates the asymptotic stability of solutions for a class of
nonlinear fractional difference equations

{

∆α
∗x(t) = f(t + α, x(t + α)), t ∈ N1−α, 0 < α ≤ 1,

x(0) = x0,
(1)

where ∆α
∗ is a Caputo like discrete fractional difference, f : [0, +∞)×R → R

is continuous with respect to t and x, Nt = {t, t + 1, t + 2, · · ·}.
Fractional differential equations have received increasing attention during

recent years since these equations have been proved to be valuable tools in
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the modeling of many phenomena in various fields of science and engineering,
see the monographs [18, 20, 23, 25] and the papers [1, 7, 11, 19, 24, 28, 30,
31] and the references therein.

Fractional difference equations have also been studied more intensively of
late [2-6, 12]. In particular, Atici and Eloe [3] investigated the commutativ-
ity properties of the fractional sum and the fractional difference operators,
Atici and Sengül [6] developed Leibniz rule and summation by parts for-
mula, Anastassiou [2] defined a Caputo like discrete fractional difference and
compared it to the Riemann-Liouville fractional discrete analog, and Chen
et al. [12] gave global and local existence results of solutions for nonlinear
fractional difference equations with the Caputo like difference operator.

However, due to the lack of geometry interpretation of the fractional
derivatives, it is difficult to find a valid tool to analyze the stability of frac-
tional differential equations, and there are few work on the stability of solu-
tions for either fractional differential equations or fractional difference equa-
tions. Some local asymptotical stability, Mittag-Leffler stability and linear
matrix inequality (LMI) stability are discussed in [13, 15, 21, 22, 27], Chen
and Zhou [13] considered the attractivity of fractional functional differential
equations by Schauder fixed point theorem, Deng [15] discussed the attrac-
tivity of nonlinear fractional differential equations by means of the principle
of contraction mappings, but there’s no work on asymptotic stability of frac-
tional difference equations via fixed point theorems.

To study stability properties of differential equations, Burton [10] pointed
out that many difficulties of Liapunov’s direct method, such as constructing
Liapunov functions and functionals, ascertaining limit sets when the equation
becomes unbounded or the derivative is not definite, vanish when fixed point
theory is used.

Motivated by applying fixed point theory to research stability of integer-
order differential equations [8-10, 16, 17, 26], in this paper, we discuss asymp-
totic stability of nonlinear fractional difference equations by using Schauder
fixed point theorem and discrete Arzela-Ascoli’s theorem.

The rest of the paper is organized as follows. In section 2, we introduce
some useful preliminaries. In section 3, we prove some sufficient conditions of
asymptotic stability of IVP (1). Finally, three examples are given to illustrate
our main results.
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2 Preliminaries

In this section, we introduce preliminary facts which are used throughout
this paper.

Definition 2.1 [3, 4] Let ν > 0. The ν−th fractional sum x is defined
by

∆−νx(t) =
1

Γ(ν)

t−ν
∑

s=a

(t − s − 1)(ν−1)x(s), (2)

where x is defined for s = a mod (1) and ∆−νx is defined for t = (a+ν) mod

(1), and t(ν) = Γ(t+1)
Γ(t−ν+1)

.

In (2), the fractional sum ∆−ν maps functions defined on Na to functions
defined on Na+ν . Atici and Eloe [3] pointed out that this definition is the
development of the theory of the fractional calculus on time scales.

Definition 2.2 [2] Let µ > 0 and m − 1 < µ < m, where m denotes a
positive integer, m = ⌈µ⌉, ⌈·⌉ ceiling of number. Set ν = m − µ. The µ−th
fractional Caputo like difference is defined as

∆µ
∗x(t) = ∆−ν(∆mx(t))

=
1

Γ(ν)

t−ν
∑

s=a

(t − s − 1)(ν−1)(∆mx)(s), ∀t ∈ Na+ν , (3)

where ∆m is the m−th order forward difference operator, the fractional Ca-
puto like difference ∆µ

∗ maps functions defined on Na to functions defined on
Na−µ.

Lemma 2.1 [2] For µ > 0, µ non-integer, m = ⌈µ⌉, ν = m− µ, it holds:

x(t) =
m−1
∑

k=0

(t − a)(k)

k!
∆kx(a) +

1

Γ(µ)

t−µ
∑

s=a+ν

(t − s − 1)(µ−1)∆µ
∗x(s),

where x is defined on Na with a ∈ Z+, Z+ = {0, 1, 2, · · ·}.
In particular, when 0 < µ < 1 and a = 0, we have

x(t) = x(0) +
1

Γ(µ)

t−µ
∑

s=1−µ

(t − s − 1)(µ−1)∆µ
∗x(s). (4)

where x is defined on N1 and ∆µ
∗x is defined on N1−µ.
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Remark 2.1 x in (4) should be defined on N0 according to Lemma 2.1,
but t = 0 leads to t− µ = −µ < 1− µ which makes the sum

∑t−µ
s=1−µ(t− s−

1)(µ−1)∆µ
∗x(s) no sense, then we define x on N1.

Lemma 2.2 A solution x : N1 → R is a solution of IVP (1) if and only
if x(t) is a solution of the the following fractional Taylor’s difference formula

x(t) = x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α)), t ∈ N1. (5)

Proof. Suppose that x defined on N1 is a solution of (1), i.e., ∆α
∗x(s) =

f(s + α, x(s + α)) for s ∈ N1−α and x(0) = x0. From (4) we have

x(t) = x(0) +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)∆α
∗x(s)

= x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α)),

which implies that (5) holds.
Conversely, if x(t) is a solution of (5), comparing between with (4) and

(5) we have

t−α
∑

s=1−α

(t − s − 1)(α−1)∆α
∗x(s) =

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α)),

that is,

t−α
∑

s=1−α

(t − s − 1)(α−1)[∆α
∗x(s) − f(s + α, x(s + α))] ≡ 0 (6)

for t ∈ N1.
For t = 1, form (6) we have

(α − 1)(α−1)[∆α
∗x(1 − α) − f(1 − α + α, x(1 − α + α))] = 0,

which implies that

∆α
∗x(1 − α) = f(1 − α + α, x(1 − α + α)). (7)
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For t = 2, form (6) we have

α(α−1)[∆α
∗x(1 − α) − f(1 − α + α, x(1 − α + α))]

+ (α − 1)(α−1)[∆α
∗x(2 − α) − f(2 − α + α, x(2 − α + α))] = 0,

which, together with (7), implies that

∆α
∗x(2 − α) = f(2 − α + α, x(2 − α + α)).

By induction, we have that ∆α
∗x(t) = f(t + α, x(t + α)) for t ∈ N1−α,

which implies that x(t) is a solution of (1). This completes the proof.

Since ∆−νt(µ) = Γ(µ+1)
Γ(µ+ν+1)

t(µ+ν) ([3], Lemma 1.1), we have

x0 = x0t
(0) = ∆−α Γ(1)x0

Γ(1 − α)
t(−α)

=
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1) x0

Γ(1 − α)
(s + α)(−α)

.

It follows that (5) is equivalent to the following equation

x(t) = 1
Γ(α)

t−α
∑

s=1−α
(t − s − 1)(α−1)[ x0

Γ(1−α)
(s + α)(−α)

+f(s + α, x(s + α))], t ∈ N1.
(8)

Lemma 2.3 Assume that β > 1 and γ > 0, then

[t(−γ)]β <
Γ(1 + βγ)

Γβ(1 + γ)
t(−βγ)

for t ∈ N1.
Proof. Since that 1 + βγ

t
< (1 + γ

t
)β, for t ∈ N1, we have

Γβ−1(t + 1)Γ(t + βγ + 1)Γβ(1 + γ)

= [tβ−1(t − 1)β−1 · · · 1β−1][(t + βγ)(t− 1 + βγ) · · · (1 + βγ)

·Γ(1 + βγ)]Γβ(1 + γ)

= [tβ(1 +
βγ

t
)][(t − 1)β(1 +

βγ

t − 1
)] · · · [1β(1 +

βγ

1
)]Γ(1 + βγ)Γβ(1 + γ)

< [tβ(1 +
γ

t
)β][(t − 1)β(1 +

γ

t − 1
)β] · · · [1β(1 +

γ

1
)β]Γβ(1 + γ)Γ(1 + βγ)

= (t + γ)β(t − 1 + γ)β · · · (1 + γ)βΓβ(1 + γ)Γ(1 + βγ)

= Γβ(t + γ + 1)Γ(1 + βγ),
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that is,

Γβ−1(t + 1)

Γβ(t + γ + 1)
<

Γ(1 + βγ)

Γβ(1 + γ)
· 1

Γ(t + γβ + 1)
.

Thus,

[t(−γ)]β =
Γβ(t + 1)

Γβ(t + γ + 1)
<

Γ(1 + βγ)

Γβ(1 + γ)
· Γ(t + 1)

Γ(t + γβ + 1)
=

Γ(1 + βγ)

Γβ(1 + γ)
t(−βγ)

holds for t ∈ N1. This completes the proof.
Definition 2.3 The solution x = ϕ(t) of IVP (1) is said to be
(i) stable, if for any ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0

such that
|x(t, x0, t0) − ϕ(t)| < ε

for |x0 − ϕ(t0)| ≤ δ(t0, ε) and all t ≥ t0;
(ii) attractive, if there exists η(t0) > 0 such that ‖x0‖ ≤ η implies

lim
t→∞

x(t, x0, t0) = 0;

(iii) asymptotically stable if it is stable and attractive.
The space l∞n0

is the set of real sequences defined on the set of positive
integers where any individual sequence is bounded with respect to the usual
supremum norm. It is well know that under the supremum norm l∞n0

is a
Banach space [29].

Definition 2.4 [14] A set Ω of sequences in l∞n0
is uniformly Cauchy

(or equi-Cauchy) if for every ε > 0, there exists an integer N such that
|x(i) − x(j)| < ε whenever i, j > N for any x = {x(n)} in Ω.

Theorem 2.1 [14] (Discrete Arzela-Ascoli’s Theorem) A bounded, uni-
formly Cauchy subset Ω of l∞n0

is relatively compact.
The following fixed point theorem are classical, which can be seen from

many books.
Theorem 2.2 (Schauder fixed point theorem) Let Ω be a closed, convex

and nonempty subset of a Banach space X. Let T : Ω → Ω be a continuous
mapping such that TΩ is a relatively compact subset of X. Then T has at
least one fixed point in Ω. That is, there exists an x ∈ Ω such that Tx = x.
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3 Main Results

Let l∞1 be the set of all real sequence x = {x(t)}∞t=1 with norm ‖x‖ =
supt∈N1

|x(t)|. Then l∞1 is a Banach space.
Define the operator

Tx(t) = x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α)), (9)

Obviously, x(t) is a solution of (1) if it is a fixed point of the operator T .
Lemma 3.1 Assume that the following condition is satisfied:
(H1) there exist constants γ1, L1 > 0 such that

∣

∣

∣

∣

x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α))

∣

∣

∣

∣

≤ L1t
(−γ1)

for t ∈ N1.
Then IVP (1) exists at least one solution x(t) for t ∈ N1.
Proof. Define the set

S1 = {x(t) : |x(t)| ≤ L1t
(−γ1) for t ∈ N1}.

It is easy to know that S1 is a closed, bounded and convex subset of R. In
addition, for t ∈ N1, we have

t(−γ1) =
Γ(t + 1)

Γ(t + γ1 + 1)
=

t!

(t + γ1) · · · (1 + γ1)Γ(1 + γ1)
→ 0 for t → ∞.

To prove that T has a fixed point, we firstly show that T maps S1 in S1.
For t ∈ N1, condition (H1) implies that |Tx(t)| ≤ L1t

(−γ1), which yields
that TS1 ⊂ S1.

Nextly, we show that T is continuous on S1.
Let ε > 0 be given, there exists a N1 ∈ N1 such that t > N1 implies that

L1t
(−γ1) < ε

2
.

Let {xn} be a sequence such that xn → x. For t ∈ {1, 2, · · · , N1}, applying

the continuity of f and
t−α
∑

s=1−α
(t − s − 1)(α−1) = Γ(t+α)

αΓ(t)
([12], Lemma 2.5), we
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have

|Txn(t) − Tx(t)|

≤ 1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)|f(s + α, xn(s + α)) − f(s + α, x(s + α))|

≤ max
s∈{1−α,···,N1−α}

|f(s + α, xn(s + α))

−f(s + α, x(s + α))| 1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)

=
Γ(t + α)

Γ(α + 1)Γ(t)
max

s∈{1−α,···,N1−α}
|f(s + α, xn(s + α)) − f(s + α, x(s + α))|

≤ Γ(N1 + α)

Γ(α + 1)Γ(N1)
max

s∈{1−α,···,N1−α}
|f(s + α, xn(s + α))

−f(s + α, x(s + α))|
→ 0 as n → ∞.

For t ∈ {N1 + 1, N1 + 2, · · ·} we have

|Txn(t) − Tx(t)|

=

∣

∣

∣

∣

x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, xn(s + α))

−[x0 +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)f(s + α, x(s + α))]

∣

∣

∣

∣

≤ 2L1t
(−γ1) ≤ ε.

Thus, for all t ∈ N1, we have

|Txn(t) − Tx(t)| → 0 as n → ∞.

which means that T is continuous.
Lastly, we show that TS1 is relatively compact.
Let t1, t2 ∈ N1 and t2 > t1 ≥ N1, we have

|Tx(t2) − Tx(t1)|

=
1

Γ(α)

∣

∣

∣

∣

x0 +
t1−α
∑

s=1−α

(t1 − s − 1)(α−1)f(s + α, x(s + α))
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−[x0 +
t2−α
∑

s=1−α

(t2 − s − 1)(α−1)f(s + α, x(s + α))]
∣

∣

∣

∣

≤ L1t2
(−γ1) + L1t1

(−γ1) < ε.

Therefore, {Tx : x ∈ S1} is a bounded and uniformly Cauchy subset.
Hence, by Theorem 2.1, TS1 is relatively compact.

According to Theorem 2.2, we have that T has a fixed point in S1 which
is a solution of IVP (1). This completes the proof.

Theorem 3.1 Assume that condition (H1) holds, then the solutions of
(1) is attractive.

Proof. By Lemma 3.1, the solutions of (1) exist and are in S1. All
functions x(t) in S1 tend to 0 as t → ∞. Then the solutions of (1) tend to
zero as t → ∞. This completes the proof.

Theorem 3.2 Assume that the following condition is satisfied:
(H2) there exist constants γ2 ∈ (α, 1) and L2 > 0 such that

|f(t + α, x(t + α)) − f(t + α, y(t + α))| ≤ L2(t + α)(−γ2)‖x − y‖

for t ∈ N1−α.
Then the solutions of IVP (1) are stable provided that

c =
L2Γ(1 − γ2)

Γ(1 + α − γ2)Γ(2 − α + γ2)
< 1. (10)

Proof Let x(t) be a solution of (1), and let x̃(t) be a solution of (1) sat-
isfying the initial value condition x̃(0) = x̃0. For t ∈ N1, applying condition
(H2) we have

|x(t) − x̃(t)| ≤ |x0 − x̃0| +
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)|f(s + α, x(s + α))

−f(s + α, x̃(s + α))|

≤ |x0 − x̃0| +
L2

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)(s + α)(−γ2)‖x − x̃‖

= |x0 − x̃0| + L2∆
−αt(−γ2)‖x − x̃‖

= |x0 − x̃0| +
L2Γ(1 − γ2)

Γ(1 + α − γ2)
t(α−γ2)‖x − x̃‖
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≤ |x0 − x̃0| +
L2Γ(1 − γ2)

Γ(1 + α − γ2)
1(α−γ2)‖x − x̃‖

= |x0 − x̃0| +
L2Γ(1 − γ2)

Γ(1 + α − γ2)Γ(2 − α + γ2)
‖x − x̃‖

= |x0 − x̃0| + c‖x − x̃‖,
which yields that

‖x − x̃‖ ≤ 1

1 − c
|x0 − x̃0|.

Then, for any ε > 0, let δ = (1−c)ε, |x0−x̃0| < δ implies that ‖x−x̃‖ < ε.
Therefore, the solutions of IVP (1) is stable. This completes the proof.

Combining Theorem 3.1 and Theorem 3.2, we have
Theorem 3.3 Assume that conditions (H1) and (H2) hold, then the

solutions of IVP (1) are asymptotically stable provided that (10) holds.
Lemma 3.2 Assume that the following condition are satisfied:

(H3)
∣

∣

∣

∣

x0

Γ(1−α)
(t + α)(−α) + f(t + α, x(t + α))

∣

∣

∣

∣

≤ L3(t + α)(−γ3)

for t ∈ N1−α, where γ3 ∈ (α, 1) and L3 > 0.
Then IVP (1) exists at least one solution x(t) on N1.

Proof. Define the set

S2 = {x(t) : |x(t)| ≤ L3Γ(1 − γ3)

Γ(1 + α − γ3)
t(α−γ3) for t ∈ N1}.

From the above assumption of S2, it is easy to know that S2 is a closed,
bounded and convex subset of R.

We firstly show that T maps S2 in S2.
For t ∈ N1, from condition (H3) we have

|Tx(t)| =
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)

∣

∣

∣

∣

x0

Γ(1 − α)
(s + α)(−α)

+f(s + α, x(s + α))

∣

∣

∣

∣

≤ L3

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)(s + α)(−γ3)

= L3∆
−αt(−γ3)

=
L3Γ(1 − γ3)

Γ(1 + α − γ3)
t(α−γ3),
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then TS2 ⊂ S2.
Nextly, we show that T is continuous on S2.
Let ε > 0 be given, there exists a N2 ∈ N1 such that t > N2 implies that

L3Γ(1 − γ3)

Γ(1 + α − γ3)
t(α−γ3) <

ε

2
.

Let {xn} be a sequence such that xn → x. For t ∈ {1, 2, · · · , N2}, similar
to Lemma 3.1, we have

|Txn(t) − Tx(t)|

≤ Γ(N2 + α)

Γ(α + 1)Γ(N2)
max

s∈{1−α,···,N2−α}
|f(s + α, xn(s + α)) − f(s + α, x(s + α))|

→ 0 as n → ∞.

For t ∈ {N2 + 1, N2 + 2, · · ·},

|Txn(t) − Tx(t)|

=
∣

∣

∣

∣

1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)[
x0

Γ(1 − α)
(s + α)(−α) + f(s + α, xn(s + α))]

− 1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)[
x0

Γ(1 − α)
(s + α)(−α) + f(s + α, x(s + α))]

∣

∣

∣

∣

≤ 2L3

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)(t + α)(−γ3)

= 2L3∆
−αt(−γ3)

≤ 2L3Γ(1 − γ3)

Γ(1 + α − γ3)
t(α−γ3)

< ε.

Thus, for all t ∈ N1, we have

|Txn(t) − Tx(t)| → 0 as n → ∞.

which means that T is continuous.
The proof of TS2 be relatively compact is similar to that of Lemma 3.1,

and we omit it. By Theorem 2.2, we have that T has a fixed point in S2

which is a solution of IVP (1). This completes the proof.
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Theorem 3.4 Assume that condition (H3) holds, then the solutions of
(1) are attractive.

Theorem 3.5 Assume that conditions (H2) and (H3) hold, then the
solutions of IVP (1) are asymptotically stable provided that (10) holds.

Lemma 3.3 Assume that the following condition are satisfied:
(H4) There exist constants β > 1

1−α
and L4 > 0 such that

∣

∣

∣

∣

x0

Γ(1 − α)
(t + α)(−α) + f(t + α, x(t + α))

∣

∣

∣

∣

≤ L4|x(t + α)|β

for t ∈ N1−α.
Then IVP (1) exists at least one solution x(t) on N1 provided that

L4Γ(1 + βγ4)Γ(1 − βγ4)

Γβ(1 + γ4)Γ(1 + α − βγ4)
≤ 1, (11)

where

α

β − 1
< γ4 <

1

β
. (12)

Proof. From β > 1
1−α

, we have that α
β−1

< 1
β

which implies that γ4 exists.

In addition, γ4 < 1
β

means that Γ(1 − βγ4) > 0 and Γ(1 + α − βγ4) > 0,
α

β−1
< γ4 implies that α − βγ4 < −γ4.

Define the set

S3 = {x(t) : |x(t)| ≤ t(−γ4) for t ∈ N1}.

We show that T maps S3 in S3.
For t ∈ N1, applying condition (H4), Lemma 2.3 and (11), we have

|Tx(t)| =
1

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)
∣

∣

∣

∣

x0

Γ(1 − α)
(s + α)(−α)

+f(s + α, x(s + α))

∣

∣

∣

∣

≤ L4

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)|x(s + α)|β
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≤ L4

Γ(α)

t−α
∑

s=1−α

(t − s − 1)(α−1)
[

(s + α)(−γ4)
]β

≤ L4Γ(1 + βγ4)

Γ(α)Γβ(1 + γ4)

t−α
∑

s=1−α

(t − s − 1)(α−1)(s + α)(−βγ4)

=
L4Γ(1 + βγ4)Γ(1 − βγ4)

Γβ(1 + γ4)Γ(1 + α − βγ4)
t(α−βγ4)

≤ t(α−βγ4)

≤ t(−γ4),

then TS3 ⊂ S3.
The remaining part of the proof is similar to that of Lemma 3.2, so we

omit it.
Theorem 3.6 Assume that condition (H4) and (11) hold, then the

solutions of (1) are attractive.
Theorem 3.7 Assume that conditions (H2) and (H4) hold, then the

solutions of IVP (1) are asymptotically stable provided that (10) and (11)
hold.

4 Examples

As the applications of our main results, we consider the following examples.
Example 4.1 Consider

{

∆0.5
∗ x(t) = 1√

2π
(t + 0.5)(−0.75) sin(x(t + 0.5)), t ∈ N0.5,

x(0) = 0,
(13)

where f(t + 0.5, x(t + 0.5)) = 1√
2π

(t + 0.5)(−0.75) sin(x(t + 0.5)).

The fractional Taylor’s difference formula of (13) is

x(t) =
1

Γ(0.5)

t−0.5
∑

s=0.5

(t − s − 1)(−0.5) 1√
2π

(s + 0.5)(−0.75) sin(x(s + 0.5)), t ∈ N1.

Since 1 = Γ(1) < Γ(0.75) < Γ(0.5) =
√

π, we have

∣

∣

∣

∣

1

Γ(0.5)

t−0.5
∑

s=0.5

(t − s − 1)(−0.5) 1√
2π

(s + 0.5)(−0.75) sin(x(s + 0.5))
∣

∣

∣

∣
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≤ 1

Γ(0.5)

t−0.5
∑

s=0.5

(t − s − 1)(−0.5) 1√
2π

(s + 0.5)(−0.75)

=
1√
2π

∆−0.5t(−0.75)

≤ Γ(0.25)√
2πΓ(0.75)

t(−0.25)

=
1

[Γ(0.75)]2
t(−0.25)

≤ t(−0.25),

which implies that condition (H1) holds.
In addition,

|f(t + 0.5, x(t + 0.5)) − f(t + 0.5, y(t + 0.5))| ≤ 1√
2π

(t + 0.5)(−0.75)‖x − y‖,

which implies that condition (H2) holds, where L2 = 1√
2π

, γ2 = 0.75.
Moreover,

L2Γ(1 − γ2)

Γ(1 + α − γ2)Γ(2 − α + γ2)
=

Γ(0.25)√
2πΓ(0.75)Γ(2.25)

=
16

5
√

2πΓ(0.75)

≤ 16

5
√

2π
< 1,

which implies that inequality (10) holds. Thus the solutions of (13) are
asymptotically stable by Theorem 3.3.

Example 4.2 Consider














∆0.5
∗ x(t) = − x0√

π
(t + 0.5)(−0.5)

+ 1√
2π

(t + 0.5)(−0.75) sin(x(t + 0.5)), t ∈ N0.5,

x(0) = x0,

(14)

where x0 is a constant and

f(t+0.5, x(t+0.5)) = − x0√
π

(t + 0.5)(−0.5)+
1√
2π

(t + 0.5)(−0.75) sin(x(t+0.5)).

EJQTDE, 2011 No. 39, p. 14



The fractional Taylor’s difference formula of (14) is

x(t) =
1

Γ(0.5)

t−0.5
∑

s=0.5

(t − s − 1)(−0.5) 1√
2π

(s + 0.5)(−0.75) sin(x(s + 0.5)), t ∈ N1.

Since
∣

∣

∣

∣

x0

Γ(1 − α)
(t + α)(−α) + f(t + α, x(t + α))

∣

∣

∣

∣

=

∣

∣

∣

∣

1√
2π

(t + 0.5)(−0.75) sin(x(t + 0.5))

∣

∣

∣

∣

≤ 1√
2π

(t + 0.5)(−0.75)

<
Γ2(0.75)√

2π
(t + 0.5)(−0.75)

=
Γ(0.75)

Γ(0.25)
(t + 0.5)(−0.75)

,

then condition (H3) is satisfied.
Similar to Example 4.1, we can easily find that condition (H2) and in-

equality (10) are satisfied. Thus the solutions of (14) are asymptotically
stable according to Theorem 3.5.

Example 4.3 Consider
{

∆0.1
∗ x(t) = 0.5x2(t + 0.1), t ∈ N0.9,

x(0) = 0,
(15)

where α = 0.1. Let β = 2, L4 = 0.5 and γ4 = 0.2, then condition (H4) and
(12) hold.

Since

L4Γ(1 + βγ4)Γ(1 − βγ4)

Γβ(1 + γ4)Γ(1 + α − βγ4)
=

0.5Γ(1.4)Γ(0.6)

Γ2(1.2)Γ(0.7)
≈ 0.6039 < 1,

then (11) is satisfied.
The solutions of (15) are attractive by Theorem 3.6.
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