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Period annulus of the harmonic oscillator
with zero cyclicity under perturbations
with a homogeneous polynomial field
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Abstract. In this work we prove, using averaging theory at any order in the small per-
turbation parameter, that the period annulus of the harmonic oscillator has cyclicity
zero (no limit cycles bifurcate) when it is perturbed by any fixed homogeneous polyno-
mial field.
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1 Introduction and main result

Consider an arbitrary polynomial planar vector field

ẋ = −y + ε P(x, y, ε), ẏ = x + ε Q(x, y, ε), (1.1)

where P, Q ∈ R{ε}[x, y] are polynomials in the state variables x and y with coefficients de-
pending analytically on the small perturbation parameter ε ∈ R. Here the dot denotes, as
usual, derivative with respect to the time independent variable. The unperturbed system (1.1)
with ε = 0 is the harmonic oscillator which has a period annulus P given by the punctured
phase plane P = R2\{(0, 0)}.

Limit cycle bifurcations for the vector fields (1.1) can be produced either from the open set
P or from its boundary ∂P = {(0, 0)} ∪ L∞, where L∞ is the line at infinity (equator of the
Poincaré compactification). In this paper we do not pay attention to the Hopf bifurcations at
the origin neither to the bifurcations at infinity (see Remark 1 of [5] for a simple example of
limit cycle bifurcation at L∞).

Let Xε be the vector field associated to system (1.1). We denote by Cycl(Xε,P) the cyclicity
of P under the perturbations (1.1) with |ε| � 1, that is, the maximum number of limit cycles
of (1.1) bifurcating from the circles that foliates P .
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Essentially there are two methods for finding limit cycles of (1.1) bifurcating from P which
are averaging methods or Melnikov functions method. It is worth to emphasize that in [1] it
is proved the equivalence between both methods.

In [5] the global upper bound [k(n− 1)/2] on Cycl(Xε,P) is given where n is defined as
n = max{deg(P), deg(Q)} and k is the order of the first Melnikov function associated to (1.1)
which is not identically zero. Also in [5] some values of Cycl(Xε,P) have been obtained for
the values 1 ≤ k ≤ 6 showing in most cases that the above upper bound is sharp. As far as we
know, the bifurcation of limit cycles from P was first analyzed (with the alternative method
based on the inverse integrating factor) in [3] under the assumption that (P, Q) has arbitrary
degree n ≥ 1 and it is independent of ε.

In this work we will compute Cycl(Xε,P) for any value of n and k but restricted to the
special kind of deformations (1.1) having the perturbation field (P, Q) independent of ε and
homogeneous in x and y. Thus we will analyze the perturbations of the form

ẋ = −y + ε Pn(x, y; λ), ẏ = x + ε Qn(x, y; λ), (1.2)

where the nonlinearities Pn and Qn are arbitrary homogeneous polynomials in x and y and its
coefficients are the components of the parameter vector λ, which does not depend on ε. Our
main result is that no limit cycles bifurcate from P under deformations (1.2), which we restate
as follows.

Theorem 1.1. The period annulus of the harmonic oscillator has cyclicity zero when it is perturbed by
any fixed homogeneous polynomial field.

2 Proof of Theorem 1.1

Introducing polar coordinates x = r cos θ, y = r sin θ, family (1.2) is written as

ṙ = ε rn A(θ; λ), θ̇ = 1 + ε rn−1 B(θ; λ), (2.1)

where A and B are homogeneous trigonometric polynomials of degree n + 1 with coefficients
λ given by

A(θ; λ) = cos θPn(cos θ, sin θ; λ) + sin θQn(cos θ, sin θ; λ)

B(θ; λ) = cos θQn(cos θ, sin θ; λ)− sin θPn(cos θ, sin θ; λ).

Here the perturbative parameter ε ∈ I with I ⊂ R a small interval containing the origin.
Therefore, for |ε| sufficiently small, we can write system (2.1) into the analytic differential
equation

dr
dθ

= F (θ, r; λ, ε) = ∑
i≥1
Fi(θ, r; λ) εi, (2.2)

with
Fi(θ, r; λ) = (−1)i+1ri(n−1)+1 A(θ; λ)Bi−1(θ; λ), for i ≥ 1. (2.3)

Notice that (2.2) is defined on the cylinder {(r, θ) ∈ (R+ ∪ {0}) × S1} with S1 = R/2πZ.
Since, F (θ, r; λ, 0) ≡ 0 it follows that equation (2.2) is written in the standard form of the
averaging theory with period 2π. The method of averaging is a classical tool that allows to



The perturbed harmonic oscillator 3

study the dynamics of the periodic nonlinear differential systems. The reader can consult for
example the book [7] or, for recent advances, the papers [2] and [6].

From the analyticity of (2.2) and the fact F (θ, r; λ, 0) ≡ 0 it follows that the solution
r(θ; z, λ, ε) of (2.1) with initial condition r(0; z, λ, ε) = z ∈ R+ can be expanded into the
convergent power series in ε as r(θ; z, λ, ε) = z + ∑j≥1 rj(θ, z, λ) εj where rj(θ, z, λ) are real
analytic functions such that rj(0, z, λ) = 0. Therefore, from the results in [4] it follows that the
recursive expressions of rj(θ; z, λ) for j ≥ 1 are given by

r1(θ, z, λ) =
∫ θ

0
F1(τ, z; λ) dτ,

rk(θ, z, λ) =
∫ θ

0

(
Fk(τ, z; λ) +

k−1

∑
`=1

`

∑
i=1

1
i!

∂iFk−`
∂ri (τ, z; λ) ∑

j1+j2+···+ji=`

i

∏
p=1

rjp(τ, z, λ)

)
dτ.

(2.4)

We can assume without loss of generality that the function r(·; z, λ, ε) is defined on the
interval [0, 2π] provided that ε is close enough to 0. So we can define the displacement map
as d : R+ × Rp × I → R+ with d(z, λ, ε) = r(2π; z, λ, ε) − z. Clearly, the isolated positive
zeros z0 ∈ R+ of d(·, λ, ε) are initial conditions for the 2π-periodic solutions of the differential
equation (2.2) and they are in one-to-one correspondence with the limit cycles of system (1.2)
bifurcating from the circle x2 + y2 = z2

0.
The displacement map d is analytic at ε = 0, hence it can be expressed via the following

convergent series expansion
d(z, λ, ε) = ∑

i≥1
fi(z; λ) εi. (2.5)

We call the coefficient functions fi(z; λ) the averaged functions (they are also called Melnikov
functions) which are clearly given by

fi(z; λ) = ri(2π, z, λ). (2.6)

We say that a branch of limit cycles bifurcates from the point z0 ∈ R+ if there is a function
z∗(λ, ε) (may be only defined in a half-neighborhood of zero) such that z∗(λ, 0) = z0 and
d(z∗(λ, ε), λ, ε) ≡ 0. It is well known, see [7] for example, that under these conditions it
follows that z0 must be a zero of the function f`(·; λ) where ` is the first subindex such that
f`(z; λ) 6≡ 0.

Let N be the set of non-negative integers. We recall that given the pair (i, j) ∈N2, the func-
tion

∫ θ
0 sini(τ) cosj(τ) dτ is a trigonometric polynomial (that is, a function in R[sin(θ), cos(θ)])

plus an eventual linear term αθ where α 6= 0 only in case that both i and j are even num-
bers. More generally, when (i, j, k) ∈ N3, the function

∫ θ
0 τk sini(τ) cosj(τ) dτ belongs to

R[θ][sin(θ), cos(θ)], the set of trigonometric polynomials with real polynomial coefficients in
θ. The fact that R[θ][sin(θ), cos(θ)] is closed under sums, products and quadratures will be
key in what follows.

We claim that
rk(θ, z, λ) = Rk(θ, λ)zk(n−1)+1 (2.7)

where Rk ∈ R[θ, λ][sin(θ), cos(θ)] is a trigonometric polynomial with polynomial coefficients
in R[θ, λ]. We will prove the claim by induction over k. From (2.2) we have F1(θ, z; λ) =

zn A(θ; λ), hence from the first equation in (2.4) we get

r1(θ, z, λ) =
∫ θ

0
F1(τ, z; λ) dτ = R1(θ, λ)zn,
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where R1(θ, λ) =
∫ θ

0 A(τ; λ) dτ. Therefore the claim is true for k = 1.
Assume now by induction hypothesis that rj(θ, z, λ) = Rj(θ, λ)zj(n−1)+1 where by defini-

tion Rj ∈ R[θ, λ][sin(θ), cos(θ)] for all 1 ≤ j ≤ k − 1. Then, since all integer subindex jp

appearing in (2.4) satisfy 1 ≤ jp ≤ ` ≤ k− 1, it follows that

rjp(θ, z, λ) = Rjp(θ, λ) zjp(n−1)+1

with Rjp ∈ R[θ, λ][sin(θ), cos(θ)]. Hence

i

∏
p=1

rjp(τ, z, λ) = R̂j1,...,ji(τ, λ) z(j1+···+ji)(n−1)+i

with R̂j1,...,ji(θ, λ) = ∏i
p=1 Rjp(θ, λ) ∈ R[θ, λ][sin(θ), cos(θ)]. Thus

∑
j1+···+ji=`

i

∏
p=1

rjp(τ, z, λ) = R∗i`(θ, λ) z`(n−1)+i (2.8)

with R∗i`(θ, λ) = ∑j1+···+ji=` R̂j1,...,ji(θ, λ) ∈ R[θ, λ][sin(θ), cos(θ)].
On the other hand, equation (2.3) yield

∂iFk−`
∂ri (θ, z; λ) = (−1)k−`z(k−`)(n−1)+1−i A(θ; λ)Bk−`−1(θ; λ). (2.9)

Therefore, using (2.3), (2.8) and (2.9) we rewrite (2.4) like (2.7) with

Rk(θ, λ) =
∫ θ

0

[
(−1)k+1 A(τ; λ)Bk−1(τ; λ) +

k−1

∑
`=1

`

∑
i=1

(−1)k−`

i!
A(τ; λ)Bk−`−1(τ; λ)R∗i`(τ, λ)

]
dτ,

so that Rk ∈ R[θ, λ][sin(θ), cos(θ)] proving the claim.
Once the claim (2.7) is proved we get that Rk(2π, λ) ∈ R[λ] for all k ∈ N and therefore,

from (2.6), that the averaged functions are fk(z; λ) = Pk(λ)zk(n−1)+1 where Pk ∈ R[λ] for all
k ∈ N. Hence it is clear that the only finite point from where 2π-periodic orbit bifurcation
can occur in the differential equation (2.2) is just from the initial condition z0 = 0 which
corresponds to the singularity located at the origin of the vector field (1.2). So no periodic
orbit bifurcation appear in the period annulus and the theorem is proved.

3 Some remarks

Theorem 1.1 is not true if the perturbation field (Pn, Qn) is not homogeneous, see for example
[3]. One of the most simple counterexamples is given by the van der Pol differential equation
ẍ + x = ε(1− x2)ẋ which is a perturbation of the harmonic oscillator with associated vector
field ẋ = y, ẏ = −x + ε(1 − x2)y. Computations show that the first averaged function is
f1(z) = 1

4 πz(z2 − 4) so that from the circle x2 + y2 = z2
0 = 4 the van der Pol limit cycle

bifurcates.

Theorem 1.1 is no longer valid if the homogeneous perturbation field (Pn, Qn) has
coefficients depending on the perturbation parameter ε, that is, for systems of the form



The perturbed harmonic oscillator 5

ẋ = −y + ε Pn(x, y; λ, ε), ẏ = x + ε Qn(x, y; λ, ε). Notice that, in this case equation (2.3) does
not hold. As example, straightforward calculations with the general quadratic system

ẋ = −y + ε ∑
i+j=2

aij(ε)xiyj, ẏ = x + ε ∑
i+j=2

bij(ε)xiyj,

having analytic coefficients aij and bij at ε = 0 produce the following averaged functions:

f1(z; λ) ≡ 0,

f2(z; λ) = z3 ξ20(λ),

f3(z; λ) = z3 (ξ30(λ) + zξ31(λ)),

f4(z; λ) = z3 (ξ40(λ) + zξ41(λ) + z2ξ42(λ)),

with ξij ∈ R[λ]. Here λ ∈ R18 denotes the parameter vector whose components are the values

aij(0), bij(0) and its derivatives a(k)ij (0) and b(k)ij (0) of order k ∈ {1, 2}. Moreover, ξ20 divides
ξ31(λ). Hence, in order to obtain a limit cycle bifurcation from some periodic orbit x2 + y2 = z2

0
of the harmonic oscillator, the parameters λ = λ∗ must satisfy f2(z; λ∗) = f3(z; λ∗) ≡ 0, in
which case ξ41(λ

∗) = 0 and λ∗ can be chosen such that the equation f4(z; λ∗) = 0 has exactly
one solution z = z0 > 0.
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