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Abstract. In this paper we study the asymptotic behavior of solutions to difference
equations of various types. We present sufficient conditions for the existence of so-
lutions with prescribed asymptotic behavior, and establish some results concerning
approximations of solutions, extending some of our previous results. Our approach
allows us to control the degree of approximation. As a measure of approximation we
use o(un) where u is an arbitrary fixed positive nonincreasing sequence.
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1 Introduction

Let N, R denote the set of positive integers and real numbers respectively. The space of all
sequences x : N→ R we denote by RN. Assume m, k ∈N, a, b : N→ R. In this paper we will
examine the asymptotic properties of the solutions of various specific cases of the following
equations

∆mxn = anF(x)(n) + bn, F : RN → RN, (E)

∆(rn∆xn) = anF(x)(n) + bn, F : RN → RN, r : N→ (0, ∞). (QE)

In particular, we will examine the properties of solutions to equations of the form

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn, f : N×Rk+1 → R, σ1, . . . , σk : N→N,

∆mxn = an f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) + bn, f : N×Rk+2 → R,

and discrete Volterra equations of the form

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xk), K : N×N→ R, f : N×R→ R.
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By a solution of (E) we mean a sequence x : N→ R satisfying (E) for all large n. Analogously
we define a solution of (QE).

The study of asymptotic properties of solutions of differential and difference equations is
of great importance. Hence many papers are devoted to this subject. For differential equations
see, for example, [2, 6, 11, 13, 24, 25, 28, 29]. Asymptotic properties of solutions of ordinary
difference equations were investigated in [12, 30, 32–34, 39]. Several related results for discrete
Volterra equations can be found in [3–5, 8, 10, 10, 14, 19–22] and for quasi-difference equations
in [1, 7, 26, 27, 31, 38].

In recent years the author presented a new theory of the study of asymptotic properties
of the solutions to difference equations. This theory is based mainly on the examination of
the behavior of the iterated remainder operator and on the application of asymptotic differ-
ence pairs. This approach allows us to control the degree of approximation. The properties
of the iterated remainder operator are presented in [15]. Asymptotic difference pairs were
introduced and used in [17]. They were also used in [18] and [21].

In this paper, in Lemma 2.1, we present a new type of asymptotic difference pair. Using
Lemma 2.1 and some earlier results, we get a number of theorems about the asymptotic
properties of the solutions. Let u be a positive and nonincreasing sequence. Lemma 2.1 allows
us to use o(un) as a measure of approximation of solutions. Asymptotic pair technique does
not work in the case of equations of type (QE). In this case, instead of Lemma 2.1, we use
Lemma 2.3.

The paper is organized as follows. In Section 2, we introduce some notation and terminol-
ogy. Moreover, in Lemma 2.1 and Lemma 2.3 we present the basic tools that will be used in
the main part of the paper. In Section 3, we present our main results concerning the existence
of solutions with prescribed asymptotic behavior. We essentially use here a fixed point the-
ory which is frequently used in literature, see for example [1–7, 11–31, 35–37]. This section is
divided into four parts devoted to various types of equations. In Section 4, we establish some
results concerning approximations of solutions.

2 Preliminaries

If x, y : N → R, then xy and |x| denote the sequences defined by xy(n) = xnyn and |x|(n) =
|xn| respectively. Moreover

‖x‖ = sup
n∈N

|xn|, c0 = {z : N→ R : lim
n→∞

zn = 0}.

Assume k ∈ N. We say that a function f : N×Rk → R is locally equibounded if for any
t ∈ Rk there exists a neighborhood U of t in Rk such that f is bounded on N×U.

We say that a subset B of RN is bounded if there exists a constant M such that ‖a− b‖ ≤ M
for any a, b ∈ B. We regard any bounded subset of RN as a metric space with metric d defined
by d(a, b) = ‖a − b‖. Assume Y ⊂ X ⊂ RN and Y is bounded. We say that an operator
F : X → RN, is mezocontinuous on Y if for any fixed index n the function ϕn : Y → R defined
by ϕn(y) = F(y)(n) is uniformly continuous.

Let m ∈N. We will use the following notations

A(m) :=

{
a ∈ RN :

∞

∑
n=1

nm−1|an| < ∞

}
,
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S(m) =

{
a ∈ RN : the series

∞

∑
i1=1

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

aim is convergent

}
.

For any a ∈ S(m) we define the sequence rm(a) by

rm(a)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

aim . (2.1)

Then S(m) is a linear subspace of c0, rm(a) ∈ c0 for any a ∈ S(m) and

rm : S(m)→ c0

is a linear operator which we call the remainder operator of order m. If a ∈ A(m), then a ∈ S(m)

and

rm(a)(n) =
∞

∑
j=n

(
m− 1 + j− n

m− 1

)
aj =

∞

∑
k=0

(
m + k− 1

m− 1

)
an+k (2.2)

for any n ∈N. Moreover
∆m(rm(a))(n) = (−1)man (2.3)

for any a ∈ A(m) and any n ∈ N. For more information about the remainder operator see
[15].

We say that a pair (A, Z) of linear subspaces of RN is an asymptotic difference pair of
order m or, simply, m-pair if A ⊂ ∆mZ, w + z ∈ Z for any eventually zero sequence w and any
z ∈ Z, and ba ∈ A for any bounded sequence b and any a ∈ A. We say that an m-pair (A, Z)
is evanescent if Z ⊂ c0.

Lemma 2.1. Assume m ∈N, a positive sequence u is nonincreasing,

A =

{
a ∈ RN :

∞

∑
n=1

nm−1|an|
un

< ∞

}
, Z =

{
z ∈ RN : zn = o(un)

}
.

Then (A, Z) is an evanescent m-pair.

Proof. It is clear that ba ∈ A for any bounded sequence b and any a ∈ A. Obviously w + z ∈ Z
for any eventually zero sequence w and any z ∈ Z. Let a ∈ A. Since u is nonincreasing, we
have a ∈ A(m). Define sequences w, a+, a− by

wn =
|an|
un

, a+n = max(0, an), a−n = −min(0, an).

Then 0 ≤ a+ ≤ |a|. Hence a+ ∈ A(m) and using (2.2) we get

rm(a+)(n) =
∞

∑
k=0

(
m + k− 1

m− 1

)
a+n+k ≤

∞

∑
k=0

(
m + k− 1

m− 1

)
|an+k|

=
∞

∑
k=0

(
m + k− 1

m− 1

)
un+kwn+k ≤

∞

∑
k=0

(
m + k− 1

m− 1

)
unwn+k = unrm(w)(n).

Therefore

0 ≤ rm(a+)(n)
un

≤ rm(w)(n).
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By (2.1), rm(w)(n) = o(1). Hence rm(a+)(n) = o(un). Analogously, rm(a−)(n) = o(un). Thus

rm(a)(n) = rm(a+ − a−)(n) = rm(a+)(n)− rm(a−)(n) = o(un).

Hence rm A ⊂ Z. Now, using (2.3), we obtain

A = (−1)m A = ∆mrm A ⊂ ∆mZ.

Lemma 2.2. Assume m ∈N, a ∈ RN, u : N→ (0, ∞), ∆u ≤ 0, and

∞

∑
n=1

nm−1|an|
un

< ∞.

Then a ∈ A(m) and rm(a)(n) = o(un).

Proof. The assertion is a consequence of the proof of Lemma 2.1.

Lemma 2.3. Assume a, r, u : N→ R, r > 0, u > 0, ∆u ≤ 0, and

∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞.

Then
∞

∑
k=n

1
rk

∞

∑
j=k

aj = o(un).

Proof. Define sequences z, w by

zn =
∞

∑
k=n

1
ukrk

∞

∑
j=k
|aj|, wn =

∞

∑
k=n

1
rk

∞

∑
j=k

aj.

By assumption, zn = o(1). Moreover

u−1
n |wn| ≤ u−1

n

∞

∑
k=n

1
rk

∞

∑
j=k
|aj| =

∞

∑
k=n

1
unrk

∞

∑
j=k
|aj|.

Since ∆u−1
n ≥ 0, we get

u−1
n |wn| ≤

∞

∑
k=n

1
ukrk

∞

∑
j=k
|aj| = zn = o(1).

Hence |wn| = uno(1) = o(un). Therefore wn = o(un).

3 Solutions with prescribed asymptotic behavior

Assume b, u ∈ RN and u is positive and nonincreasing. In this section we present sufficient
conditions for the existence of solution x with the asymptotic behavior

xn = yn + o(un)

where y is a given solution of the equation ∆myn = bn or the equation ∆(rn∆yn) = bn.
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3.1 Abstract equations

Theorem 3.1. Assume m ∈ N, a, b, u : N → R, c ∈ (0, ∞), F : RN → RN, y is a solution of the
equation ∆myn = bn,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞, U = {x ∈ RN : |x− y| ≤ c},

and F is bounded and mezocontinuous on U. Then there exists a solution x of the equation

∆mxn = anF(x)(n) + bn

such that xn = yn + o(un).

Proof. The assertion is a consequence of Lemma 2.1 and [18, Corollary 4.3].

3.2 Functional equations

Theorem 3.2. Assume m, k ∈ N, a, b, u : N → R, c ∈ (0, ∞), f : N×Rk → R, y is a solution of
the equation ∆myn = bn,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞, Y =
⋃

n∈N

[yn − c, yn + c],

σ1, . . . , σk : N→N, lim
n→∞

σi(n) = ∞ for i = 1, . . . , k,

and f is continuous and bounded on N×Yk. Then there exists a solution x of the equation

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn

such that xn = yn + o(un).

Proof. Define an operator F : RN → RN and a subset U of RN by

F(x)(n) = f (n, xσ1(n), . . . , xσk(n)), U = {x ∈ RN : |x− y| ≤ c}.

Then F is bounded on U. By [18, Example 3.4] F is mezocontinuous on U. Using Theorem 3.1
we obtain the result.

Corollary 3.3. Assume m, k ∈N, a, b, u : N→ R, f : N×Rk → R,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞,

σ1, . . . , σk : N→N, lim
n→∞

σi(n) = ∞ for i = 1, . . . , k,

and f is continuous and locally equibounded. Then for any bounded solution y of the equation ∆myn =

bn, there exists a solution x of the equation

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn

such that xn = yn + o(un).
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Proof. Assume y is a bounded solution of the equation ∆myn = bn, c > 0, and

Y =
⋃

n∈N

[yn − c, yn + c].

Then Yk is a bounded subset of Rk. For any t ∈ Yk there exist a neighborhood Ut of t and a
positive constant Mt such that | f (n, u)| ≤ Mt for any (n, u) ∈ N×Ut. Choose t1, . . . , tp ∈ Yk

such that
Yk ⊂ Ut1 ∪Ut2 ∪ · · · ∪Utp .

If M = max(Mt1 , . . . , Mtp), then | f (n, u)| ≤ M for any (n, u) ∈ N× Yk. Now, using Theo-
rem 3.2 we obtain the result.

Corollary 3.4. Assume m, k ∈N, a, b, u : N→ R, f : N×Rk → R,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞,

σ1, . . . , σk : N→N, lim
n→∞

σi(n) = ∞ for i = 1, . . . , k,

and f is continuous and bounded. Then for any solution y of the equation ∆myn = bn, there exists a
solution x of the equation

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn

such that xn = yn + o(un).

Proof. The assertion is an immediate consequence of Theorem 3.2.

Theorem 3.5. Assume m, k ∈ N, a, b, u : N → R, c ∈ (0, ∞), f : N×Rk+1 → R, y is a solution
of the equation ∆myn = bn,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞,

and f is continuous and bounded on the set

Y =
⋃

n∈N

{n} × [yn − c, yn + c]× [∆yn − c, ∆yn + c]× · · · × [∆kyn − c, ∆kyn + c].

Then there exists a solution x of the equation

∆mxn = an f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) + bn

such that xn = yn + o(un).

Proof. Define an operator F : RN → RN and a subset U of RN by

F(x)(n) = f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn), U = {x ∈ RN : |x− y| ≤ 2−kc}.

Assume x ∈ U, n ∈N, and j ∈ {1, . . . , k}. Then

|∆xn − ∆yn| ≤ |xn+1 − yn+1|+ |xn − yn| ≤ (2−k + 2−k)c ≤ c,

|∆2xn − ∆2yn| ≤ 222−kc ≤ c, . . . , |∆jxn − ∆jyn| ≤ 2j2−kc ≤ c.

Hence (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) ∈ Y. Therefore F is bounded on U. By [18, Example 3.5] F
is mezocontinuous on U. Using Theorem 3.1 we obtain the result.
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Corollary 3.6. Assume m, k ∈N, a, b, u : N→ R, f : N×Rk+1 → R,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞,

and f is continuous and locally equibounded. Then for any bounded solution y of the equation ∆myn =

bn, there exists a solution x of the equation

∆mxn = an f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) + bn

such that xn = yn + o(un).

Proof. Assume y is a bounded solution of the equation ∆myn = bn, c > 0, and

Yk =
⋃

n∈N

[yn − c, yn + c]× [∆yn − c, ∆yn + c]× · · · × [∆kyn − c, ∆kyn + c].

As in the proof of Corollary 3.3 one can show that f is bounded on N × Yk. Now, using
Theorem 3.5 we obtain the result.

Corollary 3.7. Assume m, k ∈N, a, b, u : N→ R, f : N×Rk+1 → R,

u > 0, ∆u ≤ 0,
∞

∑
n=1

nm−1|an|
un

< ∞,

and f is continuous and bounded. Then for any solution y of the equation ∆myn = bn, there exists a
solution x of the equation

∆mxn = an f (n, xn, ∆xn, ∆2xn, . . . , ∆kxn) + bn

such that xn = yn + o(un).

Proof. The assertion is an immediate consequence of Theorem 3.5.

3.3 Discrete Volterra equations

Theorem 3.8. Assume m ∈N, a, b, u : N→ R, K : N×N→ R, f : N×R→ R,

u > 0, ∆u ≤ 0, σ : N→N, lim
n→∞

σ(n) = ∞,
∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞,

y is a solution of the equation ∆myn = bn, and there exists a uniform neighborhood U of the set y(N)

such that the restriction f |N×U is continuous and bounded. Then there exists a solution x of the
equation

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xσ(k))

such that xn = yn + o(un).

Proof. The assertion is a consequence of Lemma 2.1 and [21, Theorem 3.1].
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3.4 Quasi-difference equations

Asymptotic pair technique does not work in the case of equations of type (QE). Therefore, in
this subsection we will use Lemma 2.3. Moreover, we will need the following two lemmas.

Lemma 3.9 ([23, Lemma 5]). If ∑∞
k=1

1
rk

∑∞
i=k |ui| < ∞, then

∞

∑
k=1
|uk|

k

∑
i=1

1
ri

< ∞ and
∞

∑
k=n

1
rk

∞

∑
i=k
|ui| ≤

∞

∑
k=n
|uk|

k

∑
i=1

1
ri

for any n ∈N.

Lemma 3.10 ([16, Lemma 4.7] ). Assume y, ρ : N → R, and lim
n→∞

ρn = 0. In the set X = {x ∈
RN : |x− y| ≤ |ρ|} we define a metric by the formula

d(x, z) = ‖x− z‖. (3.1)

Then any continuous map H : X → X has a fixed point.

Theorem 3.11. Assume a, b, r, u : N → R, r > 0, u > 0, ∆u ≤ 0, y is a solution of the equation
∆(rn∆yn) = bn,

∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞, q ∈N, α ∈ (0, ∞), U =

∞⋃
n=q

[yn − α, yn + α],

and f : R→ R is continuous and bounded on U. Then there exists a solution x of the equation

∆(rn∆xn) = an f (xσ(n)) + bn

such that xn = yn + o(un).

Proof. In the proof we use the methods analogous to the methods from previous papers [22]
and [23]. For n ∈N and x ∈ RN let

F(x)(n) = an f (xσ(n)). (3.2)

There exists L > 0, such that
| f (t)| ≤ L (3.3)

for any t ∈ U. Since ∆u ≤ 0, we have

∞

∑
k=1

1
rk

∞

∑
j=k
|aj| < ∞. (3.4)

Let

Y = {x ∈ RN : |x− y| ≤ α}, ρ ∈ RN, ρn = L
∞

∑
k=n

1
rk

∞

∑
j=k
|aj|.

If x ∈ Y, then xn ∈ U for large n. Hence the sequence ( f (xn)) is bounded for any x ∈ Y. By
Lemma 2.3, ρn = o(un). Hence there exists an index p such that ρn ≤ α and σ(n) ≥ q for
n ≥ p. Let

X = {x ∈ RN : |x− y| ≤ ρ and xn = yn for n < p},
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H : Y → RN, H(x)(n) =

{
yn for n < p

yn + ∑∞
k=n

1
rk

∑∞
j=k F(x)(j) for n ≥ p.

Note that X ⊂ Y. If x ∈ X, then for n ≥ p we have

|H(x)(n)− yn| =
∣∣∣∣∣ ∞

∑
k=n

1
rk

∞

∑
j=k

F(x)(j)

∣∣∣∣∣ ≤ ∞

∑
k=n

1
rk

∞

∑
j=k
|F(x)(j)| ≤ ρn.

Therefore HX ⊂ X. Let x ∈ X, and ε > 0. Using (3.4) and Lemma 3.9 we get
∞

∑
k=1
|ak|

k

∑
i=1

1
ri

< ∞.

Choose an index m ≥ p and a positive constant γ such that

L
∞

∑
k=m
|ak|

k

∑
i=1

1
ri

< ε and γ
m

∑
k=1
|ak|

k

∑
i=1

1
ri

< ε. (3.5)

Let

C =
m⋃

n=1

[yn − α, yn + α].

Since C is a compact subset of R, f is uniformly continuous on C. Choose a positive δ such
that if t1, t2 ∈ C and |t2 − t1| < δ, then

| f (t2)− f (t1)| < γ. (3.6)

Choose z ∈ X such that ‖x− z‖ < δ. Then

‖Hx− Hz‖ = sup
n≥p

∣∣∣∣∣ ∞

∑
k=n

1
rk

∞

∑
j=k

(F(x)(j)− F(z)(j))

∣∣∣∣∣
≤

∞

∑
k=p

1
rk

∞

∑
j=k
|F(x)(j)− F(z)(j)| ≤

∞

∑
k=p

1
rk

∞

∑
j=k
|aj|| f (xσ(j))− f (zσ(j))|.

Using Lemma 3.9, (3.6), (3.3), and (3.5) we obtain

‖Hx− Hz‖ ≤
∞

∑
k=p
|ak|| f (xσ(k))− f (zσ(k))|

k

∑
i=1

1
ri

≤ γ
m

∑
k=1
|ak|

k

∑
i=1

1
ri
+ 2L

∞

∑
k=m
|ak|

k

∑
i=1

1
ri

< 3ε.

Hence the map H : X → X is continuous with respect to the metric defined by (3.1). By
Lemma 3.10 there exists a point x ∈ X such that x = Hx. Then for n ≥ p we have

xn = yn +
∞

∑
k=n

1
rk

∞

∑
j=k

F(x)(j).

Hence, for n ≥ p we get

∆(rn∆xn) = ∆(rn∆yn) + ∆

(
rn∆

(
∞

∑
k=n

1
rk

∞

∑
j=k

F(x)(j)

))

= bn − ∆

(
∞

∑
j=n

F(x)(j)

)
= F(x)(n) + bn = an f (xσ(n)) + bn

for large n. Since x ∈ X and ρn = o(un), we get xn = yn + o(un).
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Corollary 3.12. Assume a, b, r, u : N → R, r > 0, u > 0, ∆u ≤ 0, y is a solution of the equation
∆(rn∆yn) = 0,

∞

∑
k=1

1
ukrk

∞

∑
j=k

(|aj|+ |bj|) < ∞, q ∈N, α ∈ (0, ∞), U =
∞⋃

n=q
[yn − α, yn + α],

and f : R→ R is continuous and bounded on U. Then there exists a solution x of the equation

∆(rn∆xn) = an f (xσ(n)) + bn

such that xn = yn + o(un).

Proof. Define sequences w, y′ by

wn =
∞

∑
k=n

1
rk

∞

∑
j=k

bj, y′n = yn + wn.

Choose a number α′ ∈ (0, α) and let β = α − α′. By Lemma 2.3, wn = o(un). Hence there
exists an index q′ ≥ q such that |wn| ≤ β for any n ≥ q′. Let

U′ =
∞⋃

n=q′
[y′n − α′, y′n + α′].

If t ∈ U′ and n ≥ q′, then

|t− yn| = |t− y′n + y′n − yn| ≤ |t− y′n|+ |y′n − yn| ≤ α′ + |wn| ≤ α′ + β = α.

Hence U′ ⊂ U. Therefore f is continuous and bounded on U′. Moreover it is easy to see that
∆(rn∆wn) = bn. Thus

∆(rn∆y′n) = ∆(rn∆yn) + ∆(rn∆wn) = bn.

By Theorem 3.11 there exists a solution x of the equation

∆(rn∆xn) = an f (xσ(n)) + bn

such that xn = y′n + o(un). Then

xn = yn + wn + o(un) = yn + o(un).

Remark 3.13. It is easy to see that if r : N → (0, ∞), then a sequence y is a solution of the
equation ∆(rn∆yn) = 0 if and only if there exist real constants c1, c2 such that

yn = c1

n−1

∑
j=1

1
rj
+ c2

for any n.

Corollary 3.14. Assume a, b, r, u : N→ R, r > 0, u > 0, ∆u ≤ 0,
∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞,

and f : R→ R is continuous. Then for any bounded solution y of the equation ∆(rn∆yn) = bn there
exists a solution x of the equation

∆(rn∆xn) = an f (xσ(n)) + bn

such that xn = yn + o(un).

Proof. The assertion is an easy consequence of Theorem 3.11.
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4 Asymptotic behavior of solutions

In this section we establish some results concerning approximations of solutions. The results
relating to equations of type (E) are based on Lemma 4.1. In the case of equations of type
(QE), we use Lemma 4.5.

Lemma 4.1 ([17, Lemma 3.7] ). Assume m ∈ N, (A, Z) is an m-pair, a ∈ A, b, x : N → R, and
∆mxn = O(an) + bn. Then there exist a solution y of the equation ∆myn = bn and a sequence z ∈ Z
such that xn = yn + zn.

Using Lemma 2.1 and Lemma 4.1 we obtain the following three theorems.

Theorem 4.2. Assume m ∈N, a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

∞

∑
n=1

nm−1|an|
un

< ∞, F : RN → RN,

and x is a solution of the equation

∆mxn = anF(x)(n) + bn

such that the sequence F(x) is bounded. Then there exists a solution y of the equation ∆myn = bn such
that xn = yn + o(un).

Theorem 4.3. Assume m, k ∈N, a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

∞

∑
n=1

nm−1|an|
un

< ∞, f : N×Rk+1 → R, σ1, . . . , σk : N→N,

and x is a solution of the equation

∆mxn = an f (n, xσ1(n), . . . , xσk(n)) + bn

such that the sequence f (n, xσ1(n), . . . , xσk(n)) is bounded. Then there exists a solution y of the equation
∆myn = bn such that xn = yn + o(un).

Theorem 4.4. Assume m ∈N, a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

K : N×N→ R,
∞

∑
n=1

nm−1

un

n

∑
k=1
|K(n, k)| < ∞, f : N×R→ R, σ : N→N,

and x is a solution of the equation

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xσ(k))

such that the sequence f (n, xσ(n)) is bounded. Then there exists a solution y of the equation ∆myn = bn

such that xn = yn + o(un).

Lemma 4.5. Assume b, x : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞, and ∆(rn∆xn) = O(an) + bn

Then there exists a solution y of the equation ∆(rn∆yn) = bn such that xn = yn + o(un).
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Proof. Define a sequence w by wn = ∆(rn∆xn)− bn. Then wn = O(an). Hence

∞

∑
k=1

1
ukrk

∞

∑
j=k
|wj| < ∞.

Define a sequence z by

zn =
∞

∑
k=n

1
rk

∞

∑
j=k

wj.

By Lemma 2.3, zn = o(un). Let y = x− z. Then

∆(rn∆yn) = ∆(rn∆xn)− ∆

(
rn

∞

∑
k=n

1
rk

∞

∑
j=k

wj

)

= ∆(rn∆xn) + ∆

(
∞

∑
j=n

wj

)
= ∆(rn∆xn)− wn = bn.

Using Lemma 4.5 we obtain the following three theorems.

Theorem 4.6. Assume a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0, F : RN → RN,

∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞,

and x is a solution of the equation ∆(rn∆xn) = anF(x)(n) + bn such that the sequence F(x) is
bounded. Then there exists a solution y of the equation ∆(rn∆yn) = bn, such that xn = yn + o(un).

Theorem 4.7. Assume k ∈N, a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

∞

∑
k=1

1
ukrk

∞

∑
j=k
|aj| < ∞, f : N×Rk+1 → R, σ1, . . . , σk : N→N,

and x is a solution of the equation

∆(rn∆xn) = an f (n, xσ1(n), . . . , xσk(n)) + bn

such that the sequence f (n, xσ1(n), . . . , xσk(n)) is bounded. Then there exists a solution y of the equation
∆(rn∆yn) = bn such that xn = yn + o(un).

Theorem 4.8. Assume m ∈N, a, b : N→ R, r, u : N→ (0, ∞), ∆u ≤ 0,

K : N×N→ R,
∞

∑
k=1

1
ukrk

∞

∑
j=k

j

∑
i=1
|K(j, i)| < ∞, f : N×R→ R,

σ : N→N, and x is a solution of the equation

∆(rn∆xn) = bn +
n

∑
k=1

K(n, k) f (k, xk)

such that the sequence f (n, xk) is bounded. Then there exists a solution y of the equation ∆myn = bn

such that xn = yn + o(un).

Remark 4.9. Theorems 4.2–4.8 do not guarantee the existence of the described solutions. In
many concrete cases the existence of such solutions can be obtained. Some of such cases are
presented in Section 3.
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