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Blow-up analysis for a doubly nonlinear parabolic
system with multi-coupled nonlinearities™

Jian Wang'and Yanyan Ge'

Abstract

This paper deals with the global existence and the global nonexistence
of a doubly nonlinear parabolic system coupled via both nonlinear reac-
tion terms and nonlinear boundary flux. The authors first establish a weak
comparison principle, then by constructing various upper and lower solu-
tions, some appropriate conditions for global existence and global nonex-
istence of solutions are determined respectively.

Keywords: Doubly nonlinear parabolic system; Global existence; Blow up;
Multi-coupled; Nonlinearity.

1 Introduction

In this paper, we consider the following problem:

(™) = Apyu+u®oPr, (V") = Ap,v+ uP2® z e Ot >0, (1.1)
Vit v =u*vh, Vg - v = uf2vP? xedNt>0, (1.2)
u(z,0) = up(x), v(z,0) = vo(x), T €Q, (1.3)

N
where Agu = div(|Vu|*"1Vu) = Y (|Vul*tug, ), Viu = ([VulfLug,, -,
i=1
|VulF~1u, ), 2 is a bounded domain in RY with smooth boundary 92, m; > 1,
ng, i, B >0, piyq; > 0,9 =1,2. v denotes the outer unit normal on the bound-
ary, uo(z), vo(z) € C1(Q) are positive and satisfy the compatibility conditions.
Parobolic equations like Eq.(1.1) appear in population dynamics, chemical
reactions, heat transfer like, for instance, the description of turbulent filtration
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in porous media, the theory of non-Newtonian fluids perturbed by nonlinear
terms and forced by rather irregular period in time excitations, the flow of a
gas through a porous medium in a turbulent regime or the spread of biological
(see [1, 2, 3] and the references given therein). In particular, Eq.(1.1) may be
used to describe the nonstationary flows in a porous medium of fluids with a
power dependence of the tangential stress on the velocity of displacement un-
der polytropic conditions. In this case, Eq.(1.1) are called the non-Newtonian
polytropic filtration equations (see [4]-[8] and the references therein). We refer
to [9] for further information on these phenomena. Recently a connection has
been revealed with soil science, specifically with flows in reservoirs exhibiting
fractured media (see [10]).

Li [11] studied the single parabolic equation with nonlinear boundary condi-
tion

(uk)t:Apu+uo‘, e, t>0,
Vpu~l/:uﬁ, x €00t >0, (1.4)
u(z,0) = uo(x), r€eQ

with k,p > 0, o, 8 > 0. It is known that the solutions of Eq. (1.4) exist globally
if and only if @ < k and 3 < min{k, (k+ 1)p/(p + 1)}.

In [12], Li et al. considered the following system with nonlinear boundary
conditions

(u*) = Apu, (012); = Apv, rEQt>0,
Vit - v = u®vP, Vv - v = ud?, x €00t >0, (1.5)
u(z,0) = uo(z), v(z,0) = vo(x), r € Q.

They obtained necessary and sufficient conditions on the global existence of all
positive (weak) solutions.

n [13], Song and Zheng studied the following quasilinear parabolic system
with multi-coupled nonlinearities

(W) = Au 4 u Pt (V™) = Av + v, z €N t>0,
% = u*2P?, % = u®P2, x €00, t >0, (1.6)
u(z,0) = uo(z), v(z,0) = vo(x), r €N

with m,n > 0, o, B, pi, ¢ > 0,2 =1,2. They obtained the necessary and suffi-
cient conditions to the global existence of solutions for 0 < m,n < 1. They also
considered the case of m,n > 1 and 0 < m < 1,n > 1. However, they only gave
some sufficient conditions to the global existence and blowup of solutions.
Motivated by the references cited above, we study the influence of nonlin-
ear reaction terms and nonlinear boundary flux on the existence and nonexis-
tence of global solutions of (1.1) — (1.3). Due to the nonlinear diffusion terms
and doubly degeneration for v = 0, |Vu| = 0 or v = 0, |Vu| = 0, we have
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some new difficulties to be overcome. Noticing that the system (1.1) includes
the Newtonian filtration system (p = 2) and the non-Newtonian filtration sys-
tem (m = 1) formally, so the method for it should be synthetic. In fact, we
can use the methods for the above two systems to deal with it. Then we in-
vestigate the global existence or blow-up properties of weak solutions to the
problem (1.1) depending on the relations among the parameters mq,ma, n1, no,
P1,D2,q1, g2, @1, @2, b1, B2. Note that (1.1) has nonlinear and nonlocal sources
u® P uP20P and nonlinear boundary sources u®2v% , u%v??, which make the
behavior of the solution different from that for that of homogeneous Neumann
or Dirichlet boundary value problems. However, it is difficult to use the same
methods as that in [13] to get the desired result. To overcome these difficulties,
we used some modification of the technique in [12] so that we can handle the
nonlinearities. Then, we use some functions to control the nonlocal sources and
prove, with the technique in [12], that the control for the nonlocal sources is
suitable. Finally we also need to consider the effect of these nonlinear terms in
the proof of the global existence(blow-up) property of solutions to (1.1).

Our main results are stated as follows.

Theorem 1.1 Assumemni < mi,ne < ma, then all positive solutions of prob-
lem (1.1)— (1.3) exist globally if and only if 1 < ny, as < nq, f1 < na, Po < na,

pip2 < (n1—a1)(n2 —B1), P1g2 < (1 —a1)(n2 — B2), p2qi < (n1 —az)(n2 — Bi)
and q1q2 < (N1 — az2)(ng — B2).

Theorem 1.2 Assumemny > mq,ngs > ms, then all positive solutions of prob-

1
lem (1.1) — (1.3) exist globally if c; < ny, as < M-;Ll)’ B1 < no, B2 <
my
mg(ng + 1) mg(ng + 1)
A < _ _ < _ AN Y
My + 1 , Pip2 > (711 a1)(n2 51), P1q2 > (nl a1)( My + 1 52),
ml(nl + 1) ml(nl + 1) mg(ng + 1)
< (nog—pF) (=2 2/ d < (2T A\ L N
p2q1_(n2 51)( mi +1 042) an (J1(J2_( my+1 a)( ma + 1

ﬁg). While the solutions will blow up in finite time if at least one of the follow-
ing conditions holds:
(a) a1 > nq;

ml(nl +1)
(b) (0%} Wa
(C) B1 > ng; ( 1)
ma(n2 +
(d) B> = =
(e) pip2 > (n1 — a)(n2 — B1); . 0 92
(f) pr1ga > (M al)(% — Ba) + (ng —m2)((n1 fn(jz)inlz +1) + mij),
(9) p2q1 > (n2 — ﬁ1)(m;§?1++11) —az) +(n1 — ml)((n2 _nfll)jrnll a + Qm_qi)’

(m1(7’L1+1) )(m2(7’L2+1)

h
(h) q1q2 > a4 1
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Theorem 1.3 Assumeny < mi,ng > ma, then all positive solutions of prob-

1
lem (1.1) — (1.3) exist globally if a1 < ny, as <y, f1 < ng, P2 < %qj—l)
ma

)

pip2 < (1 —ai1)(n2 — B1), p1gz < (n1 — al)(w — f2), p2q1 < (n1 —
mo + 1
az)(nz — B1) and qiq2 < (ng — a2)(w — f2).

mao + 1
While the solutions will blow up in finite time if at least one of the following

conditions holds:
(a) a1 > nq;

(b) az > ny;
(c) B1 > na; ( Ny
m2 ng +
(d) B me + 1 :
(e) pip2 > (”1 —a1)(n2 — B1); . ) ,
(1) o1 > G ) (P22 ) g (P ) B,
(9) p2q1 > (n1 — az2)(n2 — B1); I
(h) q1q2 > (n1 — a2)(minz2++1 — B2).

Theorem 1.4 Assumeny > my,ne < ma, then all positive solutions of prob-
1
lem (1.1) — (1.3) exist globally if aq < ny, as < MJ;’—I)’ 81 < no, By <
mi
ng, p1p2 < (n1 — ai)(ng — B1), pigz < (n1 — a1)(ne — B2), paqi < (n2 —
ml(nl +1) m1(7’L1+1)
B1)( N ( T az)(ng — B2).
While the solutions will blow up in finite time if at least one of the following

conditions holds:
(a) aq > nq;

— ) and q1qz <

ml(nl + 1)
Ores ==, 51
(c) 51 > Na;
(d) B2 > no;
(e) pip2 > (n1 — a)(nz2 — B1);
(f) p1g2 > (n1 — a1)(n2 — 52);1 0
(g) pP2q1 > (7’LQ — ﬁl)(% — ag) + (7’Ll — ml)((n2 _nfll)inf + ) + mii)’
(h) q1q2 > (w - a2)(n2 — ).

m1+1

This paper is organized as follows. Some preliminaries will be given in Section
2. Theorem 1.1-1.4 will be proved in Sections 3-5, respectively.
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2 Preliminaries

As it is well known that degenerate and singular equations need not possess
classical solutions, we give a precise definition of a weak solution to (1.1) —(1.3).

Definition 2.1 Let T > 0 and Q7 = Q x (0,t]. A function (u(z,t),v(z,t))
is called a weak upper(or lower) solution of Problem (1.1)-(1.8) in Qr if all of
the following hold:

(i) u,v € L>®(0,T; WH>2(Q)) nWH2(0, T; L*(2)) N C(Qr);

(ii) (u(z,0),v(x,0)) > (<)(uo(x),vo());
(iii) For any positive two functions 1 (z,t), o (x,t) € L*(0,T; WH2(Q))NL2(Q7),
one has

/ / (™)1 + Vi, u - Voo |dadt

T
> (S)/ / uo‘2vq11/)1dsdt+// u*tvPle) dxdt,
0 o0 Qr

/ / [(0"2)41h2 + Vin,v - Vipo]dadt

T
> (S)/ / quUBngdsdth// uP2 0P o dadt.
0 JoQ Qr

In particular, (u(x,t),v(x,t)) is called a weak solution of (1.1) — (1.3) if it
is both a weak upper and a lower solution. For every T < oo, if (u(x,t),v(z,t))
is a solution of (1.1)-(1.3) in Qr, we say that (u(x,t),v(x,t)) is global.

Next we give some preliminary propositions and a fact.

Proposition 2.1 (Comparison principle). Assume that ug,vo are positive
CY(Q) functions and (u,v) is any weak solution of (1.1)-(1.3) in Qr. Also
assume that (u,v) > (6,9) > 0 and (u,v) are a lower and an upper solution of
(1.1)—(1.3) in Qr, respectively, with nonlinear boundary fluz (Au®2v? , \u2v”?)
and (Na®27%, \u®T%2), and with nonlinear reaction terms (u® vP*, uP2v%) and
(@ TP, TWP2TPY), where 0 < A < 1 < X. Then we have (@,7) > (u,v) > (u,v) in

Qr.

Proof. For small o > 0, letting ¥, (z) = min{l, max{z/0,0}}, z € R, and set-
ting 1 = ¥y (u—u), according to the definition of solutions and lower solutions,
we have

/ / (W™ —u™)ho(u—u) + (Vi — Vi, u) - Vg (1 — u)]dadt <

/ / (Mouyih _ uozzvlh )1/)0(@ _ u)dsdt + // (goqypl _ qu,UPl )"/)o (ﬂ _ u)d:cdt
0 oN -
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Define
x >0,

X(x){o <0,

As in [14], by letting o — 0, we get

// —u™)x(u — u)dzdt < / / Au?v? — w20 ) x(u — u)dsdt
o0
+ // (galypl — &P )X(ﬂ _ u)dxdt,

that is

[ =)o
Q

S/ / (Mazy!h 7uazvm)+dsdt+// (galypl 7ua1’0p1)+d1'dt
0 o

-

< / / [0 (Au® — u®?) 4 + w2 (u — %), |dsdt
0 o0
L T A (2.7)

where W, = max{W,0}. Since A < 1, (0,0) < (4,9) < (u(=,0),v(z,0)) <
(uo(x),vo(x)), it follows from the continuity of u, v, u and v that there exists a
7 > 0 sufficiently small such that

Au®? <y Pt <Pt for (z,t) € Q.

It follows that

/(u"1 —u™)y|=rda

<c // —u™)ydxdt + o // (Pt — vP1) pdadt. (2.8)

-

Similarly, we have

/(U"2 — ") = rd
<cs // Pr_ Py, dadt 4 ¢4 // (uP? — uP?) dzdt. (2.9)

Now, (2.8) and (2.9) combined with the Gronwall’s Lemma show that (u,v) <
(u, v) in Q..

Define 7* = sup{7 € [0, T] : (u(x,t),v(z,t)) < (u(z,t),v(z,t)) for all (x,t) €
Q.}. We claim that 7 = T. Otherwise, from the continuity of u, v, u,v there
exists an € > 0, such that 7* + ¢ < T, Au®* < u®,vP* < vP' and ™ < 02,
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AuP?2 < P2 for all ¢ € [0, 7" +¢]. By (2.7), (2.8) and (2.9) we have (u,v) < (u,v)
on Q- ., which contradicts the definition of 7*. Hence, (u,v) < (u,v) on Q.

Obviously, (4,6) is a lower solution of (1.1) — (1.3) in Qr, where §y =
min{ming uo(z), mingvo(xz)} > 0. Therefore, (u,v) > (,6) > (0,0) in Q7.
Using this fact, as in the above proof we can proof that (u,v) < (@, ?) in Qr.0

For convenience, we denote § = min{ming uo(z), mingvo(z)} > 0 and 0 <
A <1 < A, which are fixed constants.
Let o (x)(k = my,m2) be the first eigenfunction of

—Arp=X"(x) in Q @r(x)=0 on 99, (2.10)

with the first eigenvalue A\;, normalized by ||¢r(2)|lcc = 1, then A\; > 0, @i (z) >
0 in Q and @ (z) € Wy TH(Q)N C(Q) and dpp(x)/dv < 0 on AN (see [15]-
[17]). Thus there exist some positive constants Ay, B, Ci, Dy, such that

~ Ovpi(z)
v

We have also |Vyi(z)| > Ej provided z € {z € Q : dist(z,0Q) < e} with
E, = Cj/2 and some positive constant €. For the fixed g, there exists a
positive constant Fj, such that ¢ (x) > Fy if x € {x € Q: dist(z,9Q) > ei}.

A < < By, |Vor(2)| > Cr,x € 0 |Vor(z)| < Di,z € Q. (2.11)

Proposition 2.2 Assume n; < mi,ne < me, if one of the following condi-
tions holds: (1°) a1 > n1; (2°) B1 > na; (3°) ag > ni; (4°) B2 > na; (5°)
q1q2 > (n1 — a2)(na — Ba). Then the solutions of (1.1) — (1.3) blow up in finite
time.

Proof. For (1°) or (2°), without loss of generality, assume a7 > ny. Consider
the single equation

(") =Ap, 2z + 07124 (x,t) € Q x (0,T),
Vi 2 - v =129, (x,t) € 9 x (0,T),
2(x,0) =2zo(x), (z,t) € Q.
We know from [11] that z blows up in finite time. Since v > § by the comparison
principle, thus (z, §) is a subsolution of (1.1) — (1.3) and (u, v) blows up in finite
’?(I)I;e(.S") or (4°) or (5°), since the solution of the system in [12] is a lower solution

of (1.1) — (1.3), in view of the blow up results of [12], under the condition of
Proposition 2.2, the solution of (1.1) — (1.3) blows up in finite time. O

The following Proposition 3 — 5 can be proved in the similar procedure.

Proposition 2.3 Assume ny > my, ny > ma, if one of the following con-

1
ditions holds: (1°) a1 > ny; (2°) B1 > no; (3°) ag > m; (4°)
m1+1
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ma(ng + 1) mi(ny +1) ma(ng +1)
. o < . - -
52>7le ; (5°) a2 < ( — ) ( 1

2
the solutions of (1.1)-(1.3) blow up in finite time.

- ﬁg) . Then

Proposition 2.4 Assume ni; < my,ns > ma, if one of the following condi-
ma(n 1
tions holds: (1°) @y > mi; (2°) B > na; (3°) an > my; (4°) By > 222 L)

mao +1 ’
mg(ng + 1)

(5°) q1g2 > (n1 —a2)( 1 —32). Then the solutions of (1.1)-(1.3) blow
ma

up in finite time.

Proposition 2.5 Assume ni; > mq,ns < ma, if one of the following condi-

ml(nl + 1)
(40 > ;
o (4°) B2 > no

— ) (ng — B2). Then the solutions of (1.1)-(1.3) blow

tions holds: (1°) ay > ny; (2°) B1 > na; (3°) ag >

ml(nl + 1)
5° _
(5°) q1q2 > ( 1

up in finite time.

At the end of this section, we describe a simple fact without proof.
Fact 1 Suppose that positive constants A, B, C, D satisfy AB < CD, then for
any two positive constants a, b, there exist two positive constants 1, lo such that
al$ > 14 and blY > 18.

3 Proof of the Theorem 1.1

In this section we will divide the proof of Theorem 1.1 into following lemmas.

Lemma 3.1 Assume ny < my,ng <meo. If a1 < ny, as < ny, f1 < ng,

B2 < ng, p1p2 < (n1 — a1)(n2 — B1), prgz < (n1 — aq)(n2 — B2), p2qi < (1 —
az)(ne — B1) and q1q2 < (n1 — ag)(ne — B2), then the solutions of problem
(1.1)-(1.8) exist globally.

Proof. Construct
(e, 1) = Rach og((1 — g, (2) "7 4 Ry,
v(x,t) = Rsel?? log((1 — ©m, (,7:))6("2_7"2”2’5/7"2 + Rs),

where Ri, Ro, R3,l1,l2 > 0 are to be determined.
For (z,t) €  x RT, by direct computation, we have
)\mleTM enlllt

ma
RQ

l
(@) = =Ry (log R)™ €, A, T <
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Similarly,

l >\m Rmz nolot
()0 = 22 Ry (log Ry)™em'xt, A0 < 2l
2
Moreover,
Na* TPt < AR RE (log(1 + Ry))*rTPrelontitpla)t
NaP25™ < XRY? R (log(1 + Ry))P2tPrepahitfila)t,

By setting ¢y, = Cmy if m1 > 1, ¢y = Dy if mp < 1 and ¢y, = Chy, if
me > 1, ¢y = Dy, if me < 1, on the boundary, we have

R'inlA leflenlllt

VioTiey > O R < KRR (log(1-+ Ra)) b
2
m2 mo—1 _nalat
VB0 > 18 émff)me X% < XRERE (log(1+ Ry))Pr el it
2 2
and

ﬂ(l‘, 0) = R1 10g((1 — Pma (.T)) + Rg) Z Rl IOg Rg,
5(:6, 0) = Rg 10g((1 — Pmsy (SC)) + RQ) Z Rg IOg RQ.

Choose Rs such that Rolog Ry > 2max{(m1 —n1)/mi, (ma — na)/mso} and by
Fact 1 there exist two positive constants R;, Rs such that

R0 > REN(1+ Ro)™ (A, ™)™ (log(1 4 Ry))=te,

mi1“my

RI2™% > REX(1 + Ro)™ (Amyc2 1) " (log(1 + Ry))P+e:,

m2~meo

Next, choose Ry, R3 such that Ry log Re > ||uglleo, R3log R2 > ||vo]]co-

Since the conditions of this lemma, there exist positive constants {1, o satis-
fying nily > a1ly +pila, nala > pali + Bilz, nily > aoli +qila, nala > gali + Bals
and

2, R;mfm QXRloq R5P? (log(l + RQ))oq-i-zn

1>
"= ni(log Ry)™ RY™ n1(Ry log Ry)™ ,
Mg BT IR Ry (log(1 + Ry
~ no(log Re)™ Ry n2(R3log Ry)™2 '

Thus, (@, ) is an upper solution of (1.1) — (1.3), which means that the solutions
of (1.1) — (1.3) are global. O

Lemma 3.2 Suppose a1 < nq, f1 < na, p1p2 > (n1 — a1)(n2 — f1), then all
positive solutions of problem (1.1) — (1.3) blow up in finite time.

EJQTDE, 2012 No. 1, p. 9



Proof. Considering the following ordinary differential system

{ (wnl )t —w™ 2Pt (an)t — wp2zﬁ1’t > 0,

(3.12)
w(x,0) =0 >0, 2(x,0) =46 > 0.

Let y(t) be the solution of the problem

dy
= 9t
dt a1y, >05
y(O) =€2,

where TN
_ ) n1(np+p1—61) _
1 = min{L, 2ERB=00Y ¢, — minfom, 8 B ), o - sty milutroey,
By the assumption, we have o > 1 and hence y(t) blows up in finite time.
1 ni+po—a
Let (w,z) = (y™ ,y"1<’112+§71*%’1>), it can be verified that (w,z) is a lower

solution of (3.12). Set (u,v) = (w, 2), then (u, v) is a subsolution of (1.1) —(1.3).
Therefore the solution (u,v) of (1.1) — (1.3) blows up in finite time. O

Lemma 3.3 Assume no < ma, if a1 < ny, P2 < ny and p1ga > (nq —
aq)(ng — B2), then the solutions of problem (1.1) — (1.3) blow up in finite time.

Proof. We prove this lemma by dividing into following two subcases:
(1) (n1 — a1)(n2 — B2) < piga < (M2 —n2)g2 + (1 — 1) (M2 — Pa2);
(”) P1g2 = (m2 - n2)‘]2 + (nl - al)(m2 — [2).

Subcase (7). Construct

U= (b _ Ct)ilz,y _ ((b _ ct)*ll + ahlJrl/mz(x))G _ we,

where h(z) = BY,2; + Nd+ 1,d = max{|z| | x € Q} and

_(m2 —n2)ga + (n1 — a1)(ma — B2) — P12 . p1+no — B
ll - ) 12 - ,
ma (pﬂ]z — (n1—oa1)(n2 — 62)) p1g2 — (N1 — 1) (ng — B2)
a =min{\""™2 (072 (1 + 1/mo)™> N™/2(2Nd + 1)2m2(0 =1 =1/m=,

_ —1—1/m 1+ moly
b~ (2Nd+ 1) MY g = Il — 3’
b = max{6~"/"2, (%51/9)—1/11},
c =min{A(n1ls) 7Y, (noly) “ta™20™2 71 (1 4 1/my)™2 N (m2F1)/2}
For (z,t) € Q x (0,b/c), we can get

(™) = clany (b — ct) "M~ APt > \(b — et)"hPf-lzar
Similarly,

(™) < clingf(b — ct)fll*lwenzfl < clyny Qw2 t1/h

Ayt > (aB(1 + 1/my))™2 N(ma+1)/2y,ma(6-1),
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On the other hand, on the boundry, we have
1
Vi, - v <(aB(1 + —))"2N™2/2(2Nd 4 1)2m20=D (h — ¢t)=m2(0-Dh
m2

quyﬁz ZA(b _ Ct)fl2q2fl1B20_

Moreover, it is easy to see that u(z,0) < § < up(z), v(x,0) < 6 < vo(x), so
(u,v) is a subsolution of (1.1) — (1.3), which blows up in finite time.

Subcase (ii). For p1ga > (ma —n2)ga + (n1 — a1)(ma — B2), choose py < p1,
such that (n1 — a1)(n2 — B2) < pogz < (Mo — na)g2 + (N1 — ayq)(ma — B2) and
Qpl Z Q;Do_

Consider the problem

(W™ )y = Ay w + w20 (272)y = Az + w22 et >0,
Vi w-v =w2z8 V. 2 v =w?z%, x €00, t>0,
w(z,0) = wo(x), 2(x,0) = 20(x), z €.
We know from the Subcase (i) that (w, z) blows up in finite time, so the solutions
of (1.1) — (1.3) blow up in finite time. O

Lemma 3.4 Assume n; <mi. If a1 < ni, B2 < ng and paqn > (n1 —
ag)(ng — B1), then the solutions of problem (1.1)-(1.8) blow up in finite time.

Proof. We can prove this lemma in the similar way as that of lemma 3.3. O

We get the proof of Theorem 1.1 by combining Proposition 2 and Lemma
3.1-3.4.

4 Proof of the Theorem 1.2

In this section we will divide the proof of Theorem 1.2 into following lemmas.

1
Lemma 4.1 Suppose ni > mi,n2 > ma. If oy < ny, ag < 7m1(n1+—|—1 )
mi
meo(ng + 1 meo(ng + 1
P < na, B2 < %,plm < (ni—a1)(n2—P1), p1g2 < (nl—al)(%—
2 2
my(ny +1) ma(ny + 1 ma(ng + 1
Ba), p2qi < (n2*51)(ﬁ*0¢2) and q1g2 < (47751 1 )7042)( WEQ 1 )
o), then the solutions of problem (1.1)-(1.3) exist globally .
h h luti bl 1.1)-(1.8 st globall
Proof. Construct
1 nq—mi)ly mq+1 a1 to _ 1y — L
(i, t) =elt (M 4+ X7 = Eaom @R oy SR L (A, e ) T
Lelity
JR g —m t/(m a2+B2 _ 1
(e, t) =l (M + N7 ¢~ Fawma ()27 0 () B E Lo Az ™) )
éelztzz,
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where ¢y, = Cpy, if m1 > 1, ¢y = Dy, if mp < 1 and ¢y, = Chy, if
mg > 1, ¢y = Dy, if ma < 1, o, (2), Am;, Cimyy D,y @ = 1,2, are de-
fined in (2.10) and (2.11), l3,l5 are positive constants to be determined, M =
max{1, [|uo||so, [[v0|oc} and
L= Xl/ml maX{MQ(q1+az+m1)/m1M(q1+az—m1)/m1 (Amlcml_l)—l/ml,
mia + 1 1
2(q1+a2)/m1M(q1+a277n1)/m1 (Am Cﬂnfl)fl/nu}7

1-mi

—1/m2

L2 = X{TLQ — m22(qz+52+m2)/m2M(Q2+ﬁ2—m2)/m2 (Am 7712—1)—1/7”27

mg + 1 20m;

9(g2+p2)/m2 p r(g2+B2—m2)/ms (AmZ cmzfl)*l/mz }

ma2
We know that *L1§0m1 (z)e(nl7m1)l1t/(m1+1)€7L1<pm1(m)e(n17m1)11t/(m1+1) > el
for any y > 0. Thus for (x,t) € Q X RT, a simple computation shows

1 _1
@)y =nqlie™hty™ 4 petthitym—ixm (2M)(q1+°‘2)/m1Ll_l(Amlcgrl) m1

(nl _ml)ll (n1—m1)l1t/(m1+1) —L (z)e(m1—mlit/(m1+1)
T (L (&)l ) L 0
my + 1

1
>_nylye™ht,
_2n1 1€

In addition,

A,

XUCH TP

Ay + Lima D) (2M) P02 (A et ™) lem i,
SX(QM)PVFOM€(a1l1+17112)t_
Similarly, we can get

n2126"2l2t, Xupzﬁﬁl < X(QM)IJZ'i‘ﬁl e(lel +5112)t,

2
A, T <A Ay + L2m2D$§+1)(2M)q2+ﬂ2 (Amzcmzﬂ)ﬂemlzt.

m2

Moreover, on the boundary, we have

(

QM)qH-az eml(n1+1)l1t/(m1+1)’ Nacepdt
(QM)q2+ﬁz em2(n2+1)lat/(ma+1) , NI

)‘Z1+Ot2€(a2l1 +qil2)t.
b

(

Vol - v 2M
(2M)q2+ﬁ26(q2l1+ﬁ2l2)t.

> <A

Vi,V >\ <A
Since the conditions of the lemma, there exist a positive constant [1,lo large
such that

ml(nl + 1)11
my+ 1

ma(ns + 1)1
naly > paly +51l2,72( 2+ i
mo + 1

nili > aqly + pila, > agly + qil,

> Bala + qoly,
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and

_ 2
i > 23 A, + Limy Dt (2M) 1102 (ng A,y e~ 7 4 2 (2M)Prter

mi1-my ny

.y 2
lo > 22 Ay + LQTngDziJrl)(2]\4)‘12+ﬁ2 (ngA cm2*1)*1 + _)\(QM)erﬁl_

m2~meo
n2

Thus, (@, ) is a global upper solution of (1.1) — (1.3). The global existence of
solution to (1.1) — (1.3) follows from the comparison principle. O

m2(n2 + 1)

mo + 1
Ql)(ng + 1)

Lemma 4.2 Suppose no > ms. If a1 < nq, B <

ma(ng +1 ny — 2
(1 701)(% — Ba) + (ng — mg) ("2 o) +miz), then, all

positive solutions of problem (1.1)-(1.3) blow up in finite time.

, P1q2 >

Proof. Set

u=5[(1 —ct)® + a*p}, (z)] " £ 6AF,
S[(1 = ct) + apm, (x)] " 2 0B~ 0 < t < 1/c,

v
where

B ma(n2 +1)(p1 +2) — 262(ma + 1)
" 2(ma + 1) (prgz + 11 B2 — a1B2) — 2ma(ny — a1)(ne + 1)’
2g2(ma + 1) + ma(ny — aq)(ne + 1)
(ma + 1)(p1g2 + n1f2 — a1f2) — ma(ny — ay)(ne + 1)’

1
a =min{g, AV lglet R (g, DA THmey,

APrrar—ni A
c=min{—— —/2 ma—1gma—nsy (aFm2>7n2+ln2+1(
2kn1(\/§)lpl no 3
n2
n2

2

)

)(lJrl)’ITLQ
mo—1cmo—ng _mot+ine+2 rrmo+1 rlng+1 (lJrl)’ITLQJrl
l ] a EN2TE 2T (2) ,

mo—1cmo—no  mo+1 rmao+1
l ) a E52T 1),

and @, (z), om, (z) is defined in (2.10) and (2.11). And obviously, u(z,0) <
§ < wp(x), v(z,0) < § <wvo(x). By simple computation, for (z,t) € Q x (0,1/¢)
we can get

3

(in)t S 267’11]{:”10147167’1171’ Malypl Z A(Salerl 27lp1/2A7k0417lp1/2-
Meanwhile,

(v"2) =0"leny B~ 71,

Ay =Amy (adl) ™22 BTID™2 gy (abl)™2 (1 + 1)[Vipy,, ™2 T BEDm =L
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If o € {x € Q: dist(z,00) > em,},0 <t <1/corz e {xeQ:dist(x,00) <
Ems },0 <t < 1/2¢, then
(u™?), <6™leng(aF,,,) 271,
2 2
A77%22 > maX{Amz (aél)szgj(g)(l+l)m2aamQ(aal)m2 (l =+ 1)E7Tr?22+1(§)(l+1)m2+1}'

If v € {x € Q: dist(x,00) < em,}, 1/2¢ <t < 1/¢, then
(v™); < 0™ leny B~M271 0 AL v > amo(adl)™2 (1 + 1)E;Z§+1B(*l*1)m2*1.
So we have (v"2); < A,,,v , for (z,t) € Q x (0,1/¢). In addition,

Vo 0 ()™ T 2 (2221

S(aél)mQBm2D7nrz27l(1 - Ct)(7l71)77%2(712+1)/(m2+1)7
M%Q& ZA5q2+B2(1 _ Ct)f2kq2flﬁz
for (z,t) € 02 x (0,1/¢).

It is easy to check that (u,v) is a subsolution of (1.1) — (1.3), which blows
up in finite time. O

Remark 4.1 Obviously, the proof of Lemma 4.2 needs not the relation of
n1 and m1.

1
Lemma 4.3 Suppose ny > mi. If 1 < na, ay < Mﬁ:); p2q1 >
mi
mi(ni +1) (ne—0G1)(n1+1)  2¢
_py (it ) - DY then all
(ng — B1)( 1 az) + (n1 — ma)( 11 +m1), en a

positive solutions of problem (1.1)-(1.8) blow up in finite time .

Proof. This lemma can be proved by the similar method as that of lemma
4.2. O

It follows from Proposition 2.3 and lemma 3.2, 4.1-4.3 that Theorem 1.2 is
true.

5 Proof of the Theorem 1.3 and 1.4

In this section we will divide the proof of Theorem 1.3 into following lemmas.

Lemma 5.1 Assume ny < my,ng > meo. If a1 < nq, as < ny, 1 < ng,
ma(ng +1 ma(ng +1

P2 < 2(na 2 1) ma(na +1) )—52),

m2+1 m2+1

— ﬁg), then all

, pip2 < (ni—aq)(n2—P1), prge < (n1—on)(

mg(ng + 1)

paqi < (n1 — a2)(ng — B1) and qigz < (n1 — ag)( e
2

positive solutions of problem (1.1)-(1.8) exist globally.
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Proof. Take

2l

(z,t) =Rie"t log((1 — i, (x))el™ —mHHm 4 Ry),
(.T t) :elzt (M i Xl/m2€_L¢m2(m)e("2*m2)lzt/(m2+1)

1]

X (2]\4)(n2+1)/(mz+1)L*1(Anwcmzfl)fl/m)7

where ¢, = Cp, if ma > 1, ¢y, = D, if ma < 1, Ry satisfying Rolog Ry >
2(m1 —mq)/my and constants Ry, M, L,l;,ls are to be determined.

By performing direct calculations, for (z,t) € Q x RT,

n l —-m m n
(@) 2 LR M log (1 — o (@)™ R

> LRy (log Ro)™ e,

)\m R;nl enlllt
1
le ?
2

A, T

IN

1
@) >

nolot
§n2126 ,

An’mﬁ SX(AmQ + ngDZﬁ;Jrl)(QM)mz (n2+1)/(m2+1) (Amg 0%2*1)*16712&15.
In addition,

X(2M)P! (Ry log(1 + Ry))*telehtpila)t,

AT oPr < (2
<2

NP> M)P(Ry log(1 + Rp))P2elr2hithiba)t

By setting ¢y, = Chy, if m1 > 1,¢pn, = Dipy, if m1 < 1, on the boundary, we
have that

R;nlcmi—lAml bt
(1+ Ry)™ ’
<Ry log(1 + Ry))2(2M) 1 elozhital2)t,
vm26 v ZX(2M)m2(’n2+1)/(7n2+1)e’n’L2(anrl)lzt/(szrl)7
<\

Vv >
Xueuﬁth
Na 5% <X(Rylog(1 + Rp))® (2M)P2¢lazli+0alat

There exist two positive constants Ry, M such that R; log Ra > max{1, ||uol|cc}
M > max{1, ||vo|loc } and by Fact 1 such that

R~ > X\2M)? (log(1 + R2))**(1 + R2)™ (A

- Czi_l)_la
(2M)m2(n2+1)/(ma+)=B2 > RE(16g(1 + R,))%.

Set

L=X"" max{"2—"2

2(n2+m2+2)/(m2+1)M(ngme)/(m2+1) (A cmzfl)fl/mQ
Mo + 1 m2-meo )
2(n2+1)/(mz+1)M(nz—mz)/(mz+1)(A

maC2 )T/ m2
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On the other hand , there exist positive constants [y, l> large such that

nily > aily + pila, nale > paly + Bilo,
mg(ng —+ 1)

ls > qol l
1 2 > g2l + Balo

nili > aoly + qils,

and

s W\, R IN(2M)P1 (R log(1 4 Ry))™
1 _ang“ (10g Rg)nl ni (Rl IOg Rg)nl ’
Iy >2M( Ay + Lmo D21y (20)m2 (2t )/ (mat ) (y A, em2=1) =1

2
+ =Ry log(1+ R))™ (2M)™.
2

We can see that (u,?) is an upper solution of (1.1) — (1.3). Thus the solutions
of (1.1) — (1.3) are global. O

By combining Proposition 2.4 and Lemma 3.2, 3.4, 4.2 and 5.1 that Theorem
1.3 is true.
In a similar way to the proof of Theorem 1.3, we have Theorem 1.4.
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