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Abstract: In this paper, we investigate the non-cooperative reaction-diffusion model of nuclear

reactors subject to the homogeneous Neumann boundary condition. By establishing appropriate

Lyapunov functions, we prove the global stability of the unique positive constant equilibrium

solution.
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1 Introduction and main result

In this work, we study the following non-cooperative reaction-diffusion system which is an

extension of a model proposed by Kastenberg and Chambré in [3] to describe the reaction

process of nuclear reactors. The mathematical form of the system we shall investigate satisfies
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






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∂u

∂t
− ∆u = au − buv, in Ω × (0,∞),

∂v

∂t
− ∆v = cu − duv − ev, in Ω × (0,∞),

∂νu = ∂νv = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, in Ω,

v(x, 0) = v0(x) ≥ 0, 6≡ 0, in Ω.

(1.1)

Here, Ω is a bounded domain in RN(N ≥ 1) with smooth boundary ∂Ω, and ν is the

outward unit normal vector on ∂Ω and ∂ν = ∂

∂ν
. The admissible initial data u0(x) and

v0(x) are continuous functions on the closure Ω and all the parameters a, b, c, d and e which

appearing in model (1.1) are assumed to be positive constants. The unknown functions u(x, t)

and v(x, t) respectively stand for the density of fast neutrons and the fuel temperature. The

homogeneous Neumann boundary condition means that the boundary of the closed container

is heat insulation and neutron flux can not go through the boundary ∂Ω. By the standard

theory for parabolic equations, it is easy to see that u(x, t), v(x, t) exists for all t > 0 and
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u(x, t), v(x, t) > 0 for x ∈ Ω and t > 0. As for more discussions on this model and the

related ones, one may refer to [1, 3–5, 10].

In the very recent two research works [1, 4], the model has received analytical study

under the homogeneous Dirichlet boundary condition. G. Arioli in [1] provided existence

results for nontrivial periodic solutions and a global attractor. In [4], López-Gómez was

mainly concerned with the corresponding steady state problem. Peng etc. [8] and Zhou [12]

completed and sharpened those derived in [1, 4].

In the present work, we consider the model (1.1) under the homogeneous Neumann

boundary condition and completely determine the global stability of the unique positive

constant equilibrium solution by establishing appropriate Lyapunov functions.

First of all, we note that (1.1) has a unique positive constant equilibrium (u∗, v∗) if and

only if a < bc

d
, where

(u∗, v∗) =
( ae

bc − ad
,

a

b

)

.

The main result of this paper is as follows.

Theorem 1 Suppose that a < bc

d
. Then the solution (u∗, v∗) for system (1.1) is globally

asymptotically stable.

Clearly, the global stability of (u∗, v∗) implies that (1.1) admits no positive non-constant

equilibrium solutions.

2 Proof of Theorem 1

Before giving the proof of Theorem 1, we first investigate the corresponding steady-state

problem of the reaction-diffusion system (1.1), which may display the dynamical behavior of

solutions to (1.1) as time goes to infinity. This steady-state problem satisfies














−∆u = au − buv, in Ω,

−∆v = cu − duv − ev, in Ω,

∂νu = ∂νv = 0, on ∂Ω.

(2.1)

In order to derive the desired results, we need to set

w = u −
b

d
v. (2.2)

Thus, the original system (2.1) is changed into the following one:


























−∆w +
(bc

d
− a

)

w =
b

d

(

a + e −
bc

d

)

v, in Ω,

−∆v +
(

e −
bc

d

)

v = cw − dwv − bv2, in Ω,

∂νw = ∂νv = 0, on ∂Ω.

(2.3)

We have the following result:
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Proposition 1 Assume that a < bc

d
and (u(x), v(x)) is a coexistence state (i.e. u(x) >

0, v(x) > 0) of (2.1). We have

(i) if a + e − bc

d
> 0, then u(x) >

bv(x)
d

on Ω;

(ii) if a + e − bc

d
= 0, then u(x) = bv(x)

d
on Ω;

(iii) if a + e − bc

d
< 0, then u(x) <

bv(x)
d

on Ω.

Proof. In case (i), if (u, v) is a coexistence state of (2.1), then v > 0 in Ω, thanks to a < bc

d
,

the well-known maximum principle implies w > 0 by using the first equation in (2.3). For

case (ii) and (iii), the argument is similar to that in case (i). �

In the following, we give the proof of Theorem 1. In order to analyze the global stability

of (u∗, v∗), we consider three different cases.

Case 1. a < bc

d
− e

To our purpose, we need another change of variables z = −w, and consider the equations

of (u, z). Thus, this means that the original system (1.1) is transformed into the following:























































∂u

∂t
− ∆u = (a − du − dz)u, in Ω × (0,∞),

∂z

∂t
− ∆z =

(bc

d
− a − e

)

u − ez, in Ω × (0,∞),

∂νu = ∂νz = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, in Ω,

z(x, 0) = z0(x) =
bv(x, 0)

d
− u(x, 0), in Ω.

(2.4)

When bc

d
− a − e > 0, the system (2.4) has a unique equilibrium point (u∗, z∗), where

(u∗, z∗) =
( ae

bc − ad
,

a(bc − ad − de)

d(bc − ad)

)

.

For the system (2.4), we can derive that (u∗, z∗) is globally asymptotically stable, which

thereby implies the global stability of (u∗, v∗). To show this, we first prove the following

result.

Proposition 2 Assume that a < bc

d
− e, then for any small ǫ > 0, there exists a T > 0,

such that the solution (u(x, t), v(x, t)) of (2.4) satisfies,

0 < u(x, t) <
a

d
+ ǫ, − ǫ < z(x, t) <

a(bc − ad − de)

d2e
+ ǫ

for all x ∈ Ω and t > T .

Proof. Thanks to u(x, 0) = u0(x) ≥ 0, 6≡ 0, by the strong maximum principle for parabolic

equation, we have u(x, t) > 0 for all x ∈ Ω and t > 0. So (2.4) is a mixed quasi-monotonic
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system by section 8.2 in [7]. This property allows us to construct the following pair of lower

and upper solutions:

(u, z) = (0, c∗1 exp (−et)), (u, z) = (M1, M2),

where c∗1 = minΩ z0(x), M1 and M2 are large and positive constants to be determined. Note

that c∗1 may be negative or positive. Then, simple analysis shows that, if

a − dM1 − dc∗1 exp(−et) ≤ 0,
(bc

d
− a − e

)

M1 − eM2 ≤ 0,

then (u, z) and (u, z) are a pair of lower and upper solutions to (2.4) . This implies that

0 < u(x, t) < M1, c∗1 exp(−et) < z(x, t) < M2

for all x ∈ Ω and t > 0. By letting t be large, we have that, there is a large T1 > 0 such that

0 < u(x, t) < M1, − ǫ < z(x, t) < M2 (2.5)

for all x ∈ Ω and t > T1.

In the following, we will obtain the more exact upper bound of the solutions to (2.4). It

is clear that a − du − dz ≤ a − du + dǫ in Ω × [T1,∞) from the second inequality of (2.5).

Therefore, u(x, t) is a lower solution of the following problem



















∂ϕ

∂t
− ∆ϕ = (a − dϕ + dǫ)ϕ, in Ω × (T1,∞),

∂νϕ = 0, on ∂Ω × (T1,∞),

ϕ(x, T1) = u(x, T1), on Ω.

(2.6)

Let φ(t) be the unique positive solution of the problem

{

φt = (a − dφ + dǫ)φ, in (T1,∞),

φ(T1) = maxΩ u(x, T1).

Then φ(t) is a upper solution of (2.6). As limt→∞ φ(t) = a

d
+ ǫ, taking larger T2 ≥ T1 if

necessary, we can get from the comparison principle that

u(x, t) < φ(t) + ǫ <
a

d
+ ǫ

for all x ∈ Ω and t ≥ T2. Hence, by the second equation of (2.4), z(x, t) is a lower solution

of the following problem


















∂ϕ

∂t
− ∆ϕ =

(bc

d
− a − e

)(a

d
+ ǫ

)

− eϕ, in Ω × (T2,∞),

∂νϕ = 0, on ∂Ω × (T2,∞),

ϕ(x, T2) = z(x, T2), on Ω.

(2.7)
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Let φ(t) be the unique positive solution of the problem






φt =
(bc

d
− a − e

)(a

d
+ ǫ

)

− eφ, in (T2,∞),

φ(T2) = maxΩ z(x, T2).

Then φ(t) is a upper solution of (2.7). As limt→∞ φ(t) = a(bc−ad−de)
d2e

+ ǫ, taking T ≥ T2 if

necessary, we have

z(x, t) < φ(t) + ǫ <
a(bc − ad − de)

d2e
+ ǫ, for all x ∈ Ω, t ≥ T.

The proof is complete. �

Proposition 3 Suppose that a < bc

d
− e. Then the solution (u∗, z∗) for system (2.4) is

globally asymptotically stable, which implies the global stability of (u∗, v∗) for system (1.1).

Proof. To prove our result, we need to construct the following Lyapunov functional:

E(t) =

∫

Ω

W (u(x, t), z(x, t))dx,

with

W (u, z) =

∫

u − u∗

u
du + k

∫

(z − z∗)dz,

where k is a positive constant to be determined.

dE(t)

dt
=

∫

Ω

{u − u∗

u
ut + k(z − z∗)zt

}

dx

=

∫

Ω

u − u∗

u
∆udx + k

∫

Ω

(z − z∗)∆zdx +

∫

Ω

(u − u∗)(a − du − dz)dx

+k

∫

Ω

(z − z∗)

[

(bc

d
− a − e

)

u − ez

]

dx

= −

∫

Ω

u∗|∇u|2

u2
dx − k

∫

Ω

|∇z|2dx +

∫

Ω

(u − u∗)(du∗ + dz∗ − du − dz)dx

+k

∫

Ω

(z − z∗)

[

(bc

d
− a − e

)

(u − u∗) − e(z − z∗)

]

dx

= −

∫

Ω

u∗|∇u|2

u2
dx − k

∫

Ω

|∇z|2dx − d

∫

Ω

(u − u∗)2dx

+

[

k
(bc

d
− a − e

)

− d

]
∫

Ω

(u − u∗)(z − z∗)dx − ek

∫

Ω

(z − z∗)2dx.

Set ξ = u − u∗, η = z − z∗, we have

dE(t)

dt
≤

∫

Ω

{

− dξ2 +

[

k
(bc

d
− a − e

)

− d

]

ξη − ekη2
}

dx. (2.8)
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If the inequality
[

k
(bc

d
− a − e

)

− d

]2

− 4dek < 0 (2.9)

holds, from (2.8), it is easy to see that

−dξ2 +

[

k
(bc

d
− a − e

)

− d

]

ξη − ekη2

takes negative values unless u = u∗ and v = v∗.

Next, we will show that it is possible to choose a suitable k > 0 such that (2.9) holds.

To this end, we rewrite (2.9) as

(bc

d
− a − e

)2

k2 − 2(bc − ad + de)k + d2 < 0, (2.10)

through a simple computation, we can choose a fixed constant k = d2(bc−ad+de)
(bc−ad−de)2

> 0 such

that (2.9) holds. Thus, combing Proposition 2.2 and the routine computation as that in

the proof of Lemma 5.1 in [6] or Theorem 2.1 in [11], one can show that (u∗, z∗) is globally

asymptotically stable and the proof is complete. �

Case 2. a = bc

d
− e

Similarly, under the scaling z = bv

d
− u, in our case, system (1.1) becomes the following:



















































∂u

∂t
− ∆u = (a − du − dz)u, in Ω × (0,∞),

∂z

∂t
− ∆z = −ez, in Ω × (0,∞),

∂νu = ∂νz = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, in Ω,

z(x, 0) = z0(x) =
bv(x, 0)

d
− u(x, 0), in Ω,

(2.11)

the constant equilibrium for system (2.11) is (u∗, z∗) = (a

d
, 0).

Proposition 4 Suppose that a = bc

d
− e. Then the solution (u∗, z∗) for system (2.11) is

globally asymptotically stable, which implies the global stability of (u∗, v∗) for system (1.1).

Proof. The proof is similar to that of Theorem 1.1 in [9]. Basic analysis deduces that

z(x, t) → 0 uniformly on Ω, as t → ∞. (2.12)

Obviously, u(x, t) solves






















∂u

∂t
− ∆u = (a − du − dz)u, in Ω × (0,∞),

∂νu = 0, on ∂Ω × (0,∞),

u(x, 0) ≥ 0, 6≡ 0, in Ω.

(2.13)
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By use of (2.12), for any small ǫ > 0, we can find a large T3 > 0 such that

−ǫ < z < ǫ, for all x ∈ Ω and t ≥ T3.

Consider the two auxiliary problems:























∂ũ

∂t
− ∆ũ = (a − dũ + dǫ)ũ, in Ω × (T3,∞),

∂ν ũ = 0, on ∂Ω × (T3,∞),

ũ(x, T3) = u(x, T3) > 0, in Ω,

(2.14)

and






















∂û

∂t
− ∆û = (a − dû − dǫ)û, in Ω × (T3,∞),

∂ν û = 0, on ∂Ω × (T3,∞),

û(x, T3) = u(x, T3) > 0, in Ω.

(2.15)

It is clear that ũ(x, t) and û(x, t) respectively are the upper and lower solutions of (2.13).

Thus, due to the comparison principle for parabolic equations, we get

û(x, t) < u(x, t) < ũ(x, t), for all x ∈ Ω and t ≥ T3.

By Lemma 2.1 in [9], we have

ũ(x, t) → ũǫ(x) and û(x, t) → ûǫ(x)

uniformly on Ω as t → ∞, where ũǫ(x) and ûǫ(x) respectively are the corresponding unique

steady state of (2.14) and (2.15). By a simple upper-lower solution argument for elliptic

equations, together with the uniqueness of solution, it is easily proved that both ũǫ(x) and

ûǫ(x) converge to u(x) uniformly on Ω as ǫ → 0, where u(x) = a

d
is the unique positive

solution of the following system:







−∆u = (a − du)u, in Ω,

∂νu = 0, on ∂Ω.
(2.16)

Thus, our analysis shows u(x, t) → a

d
uniformly on Ω as ǫ → 0. Then, using the theory in [2],

we can confirm the asymptotic stability of (u∗, z∗). This completes the proof. �

Case 3. bc

d
− e < a < bc

d
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By (2.2), the original system (1.1) is transformed into the following system:


















































∂u

∂t
− ∆u = (a − du + dw)u, in Ω × (0,∞),

∂w

∂t
− ∆w =

(

a + e −
bc

d

)

u − ew, in Ω × (0,∞),

∂νu = ∂νw = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, in Ω,

w(x, 0) = w0(x) = u(x, 0) −
bv(x, 0)

d
, in Ω.

(2.17)

When bc

d
− a − e < 0, the system (2.17) has a unique equilibrium point (u∗, w∗), where

(u∗, w∗) =
( ae

bc − ad
,

a(ad + de − bc)

d(bc − ad)

)

.

To prove the global stability of (u∗, w∗) for system (2.17), we also need to show u(x, t), w(x, t)

is bounded for all x and large t.

Proposition 5 Assume that bc

d
− e < a < bc

d
. then for any small ǫ > 0, there exists a large

T > 0 and two positive constants C1 and C2 such that the solution (u(x, t), w(x, t)) of (2.17)

satisfies:

0 < u(x, t) < C1, − ǫ < w(x, t) < C2

for all x ∈ Ω and T > 0.

Proof. The proof is similar to that of Proposition 2. In this case, we notice that the system

(2.17) is a quasimonotone increasing system (see section 8.2 in [7]). We construct the similar

pair of lower and upper solutions

(u, w) = (0, c∗2 exp (−et)), (u, w) = (C1, C2),

in the present case, c∗2 = minΩ w0(x) and C1, C2 should satisfy

a

d
+ C2 ≤ C1, (a + e −

bc

d
)C1 ≤ eC2. (2.18)

In view of a < bc

d
, we can choose M ≥ ae

bc−ad
, and C1, C2 satisfies

C1 = M,
d(a + e) − bc

de
M ≤ C2 ≤ M −

a

d
.

Then the inequalities of (2.18) hold. This implies that

0 < u(x, t) < C1, c∗2 exp(−et) < w(x, t) < C2

for all x ∈ Ω and t > 0. By letting t be large, we have that, there is a large T > 0 such that

0 < u(x, t) < C1, − ǫ < w(x, t) < C2

for all x ∈ Ω and t > T . This ends the proof. �

Now, based on Proposition 5, we can claim the following result:
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Proposition 6 Suppose that bc

d
− e < a < bc

d
. Then the solution (u∗, w∗) for system (2.17)

is globally asymptotically stable, which implies the global stability of (u∗, v∗) for system (1.1).

Proof. The proof is similar to that of Proposition 2.3. We first construct the following

Lyapunov functional:

E(t) =

∫

Ω

E(u(x, t), w(x, t))dx,

with

E(u, w) =

∫

u − u∗

u
du + λ

∫

(w − w∗)dz,

where λ is a positive constant to be determined.

dE(t)

dt
=

∫

Ω

{u − u∗

u
ut + λ(w − w∗)wt

}

dx

=

∫

Ω

u − u∗

u
∆udx + λ

∫

Ω

(w − w∗)∆wdx +

∫

Ω

(u − u∗)(a − du + dw)dx

+λ

∫

Ω

(w − w∗)

[

(

a + e −
bc

d

)

u − ew

]

dx

= −

∫

Ω

u∗|∇u|2

u2
dx − λ

∫

Ω

|∇w|2dx +

∫

Ω

(u − u∗)(du∗ − dw∗ − du + dw)dx

+λ

∫

Ω

(w − w∗)

[

(

a + e −
bc

d

)

(u − u∗) − e(w − w∗)

]

dx

= −

∫

Ω

u∗|∇u|2

u2
dx − λ

∫

Ω

|∇w|2dx − d

∫

Ω

(u − u∗)2dx

+

[

λ
(

a + e −
bc

d

)

+ d

]
∫

Ω

(u − u∗)(w − w∗)dx − eλ

∫

Ω

(w − w∗)2dx.

Applying the similar argument to the last part in the proof of Proposition 3, we can

choose a fixed constant λ = d2(de+bc−ad)
(ad+de−bc)2

> 0 such that for any t > 0, E(t) is a Lyapunov

function for system (2.17), namely, for t > 0, E ′(t) < 0 along trajectories except at (u∗, w∗)

where E ′(t) = 0. The equivalence between (1.1) and (2.17) implies the global stability of

(u(x, t), v(x, t)) under the condition bc

d
− e < a < bc

d
.

Now from Propositions 3, 4 and 6, we arrive at the conclusion of Theorem 1 and the

proof of Theorem 1 is completed. �
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