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Abstract. In this paper, we shall study unilateral global bifurcation phenomenon for
the following homogeneous Kirchhoff type problem{

−
(∫ 1

0 |u
′|2 dx

)
u′′ = λu3 + h(x, u, λ) in (0, 1),

u(0) = u(1) = 0.

As application of bifurcation result, we shall determine the interval of λ in which there
exist nodal solutions for the following homogeneous Kirchhoff type problem{

−
(∫ 1

0 |u
′|2 dx

)
u′′ = λ f (x, u) in (0, 1),

u(0) = u(1) = 0,

where f is asymptotically cubic at zero and infinity. To do this, we also establish
a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue
problem.
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1 Introduction

Consider the following problem−
(∫ 1

0 |u
′|2 dx

)
u′′ = λu3 + h(x, u, λ) in (0, 1),

u(0) = u(1) = 0,
(1.1)

where λ is a nonnegative parameter and h : (0, 1)×R2 → R is a continuous function satisfying

lim
s→0

h(x, s, λ)

s3 = 0 (1.2)
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uniformly for all x ∈ (0, 1) and λ on bounded sets.
The problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff

in 1883 to describe the transversal oscillations of a stretched string [16]. Some important and
interesting results can be found, for example, in [1, 4, 12, 13, 15, 19, 25]. Recently, there are
many mathematicians studying the problem (1.1), see [5, 6, 8, 17, 20, 21, 22, 24, 26] and the
references therein. A distinguishing feature of problem (1.1) is that the first equation contains
a nonlocal coefficient

∫ 1
0 |u

′|2 dx, and hence the equation is no longer a pointwise identity,
which raises some essential difficulties to the study of this kind of problems. In particular, the
bifurcation theory of [11, 23] does not work on it.

As shown in [3], the following problem−
(∫ 1

0 |u
′|2 dx

)
u′′ = λu3 in (0, 1),

u(0) = u(1) = 0
(1.3)

possesses infinitely many eigenvalues 0 < µ1 < µ2 < · · · < µk → +∞, all of which are simple.
The eigenfunction ϕk corresponding to µk has exactly k − 1 simple zeros in (0, 1). Let S+

k
denote the set of functions in E := C1

0 [0, 1] which have exactly k− 1 interior nodal (i.e. non-
degenerate) zeros in (0,1) and are positive near x = 0, and set S−k = −S+

k , and Sk = S+
k ∪ S−k . It

is clear that S+
k and S−k are disjoint and open in E. Finally, let Φ±k = R× S±k and Φk = R× Sk

under the product topology. The first main result of this paper is the following theorem.

Theorem 1.1. The pair (µk, 0) is a bifurcation point of (1.1). Moreover, there are two distinct un-
bounded continua in R× H1

0(0, 1), C +
k and C −k , consisting of the bifurcation branch Ck emanating

from (µk, 0), such that C ν
k ⊆

(
{(µk, 0)} ∪Φν

k

)
, ν ∈ {+,−}.

It is well known that the index formula of an isolated zero is very important in the study
of bifurcation phenomena for semi-linear differential equations. However, problem (1.1) is
nonlinear. In order to overcome this difficulty, we study the following auxiliary homogeneous
eigenvalue problem −

(∫ 1
0 |u

′|2 dx
)p/2

u′′ = λ|u|pu in (0, 1),

u(0) = u(1) = 0,
(1.4)

where p ∈ [0, 2]. We study the spectral structure, and establish an index formula via a suitable
homotopic deformation from a general p ∈ [0, 2] to p = 0 for problem (1.4). Let λ1(p)
denote the first eigenvalue of (1.4). As shown in [9], λ1(p) > 0 is simple, isolated, the unique
principal eigenvalue of (1.4), and is continuous with respect to p. Our second main result is
the following theorem.

Theorem 1.2. The set of all eigenvalues of (1.4) is formed by a sequence

0 < λ1(p) < λ2(p) < · · · < λk(p)→ +∞.

Every λk(p) is simple, continuous with respect to p and the corresponding one dimensional space of
solutions of (1.4) with λ = λk(p) is spanned by a function having precisely k bumps in (0, 1). Each
k-bump solution is constructed by the reflection and compression of the eigenfunction ϕ1 associated
with λ1(p).

Based on Theorem 1.1, we study the existence of nodal solutions for the following problem−
(∫ 1

0 |u
′|2 dx

)
u′′ = λ f (x, u) in (0, 1),

u(0) = u(1) = 0.
(1.5)
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We assume that f satisfies the following conditions

(f1) f : (0, 1)×R → R is a continuous function such that f (x, s)s > 0 for all x ∈ (0, 1) and
any s 6= 0.

(f2) there exist f0, f∞ ∈ (0,+∞) such that

lim
s→0+

f (x, s)
s3 = f0, lim

s→+∞

f (x, s)
s3 = f∞

uniformly with respect to all x ∈ (0, 1).

The last main theorem of this paper is the following result.

Theorem 1.3. Assume that f satisfies (f1)–(f2). Then the pair (µk/ f0, 0) is a bifurcation point of
(1.5) and there are two distinct unbounded continua in R× H1

0(0, 1), C +
k and C −k , emanating from

(µk/ f0, 0), such that C ν
k ⊆

(
{(µk/ f0, 0)} ∪Φν

k

)
and links (µk/ f0, 0) to (µk/ f∞, ∞).

The rest of this paper is arranged as follows. In Section 2, we establish the spectrum of
problem (1.4). In Section 3 and 4, we give the proofs of Theorem 1.1 and 1.3, respectively.

2 Spectrum of (1.4)

Let X be the usual Sobolev space H1
0(0, 1) with the norm ‖u‖ =

( ∫ 1
0 |u

′|2 dx
)1/2. For any

α ∈ (0, 1], we use Cα[0, 1] to denote all the real functions such that

‖u‖α := sup
x,y∈[0,1],x 6=y

|u(x)− u(y)|
|x− y|α < +∞.

Firstly, we have the following regularity result.

Proposition 2.1. Any weak solution u ∈ X of problem (1.4) is also a classical solution, i.e., u ∈
C2[0, 1] satisfying (1.4).

Proof. Let u be a nontrivial weak solution of problem (1.4) and

f (x) =
λ|u(x)|pu(x)
‖u‖p .

Note that
H1

0(0, 1) =
{

u ∈ AC[0, 1] : u′ ∈ L2(0, 1) and u(0) = u(1) = 0
}

.

Then it is obvious that f ∈ L2(0, 1), in fact continuous by the compact embedding X ↪→
C1/2[0, 1]. According to the definition of weak solution, we have

−
(∫ 1

0

∣∣u′∣∣2 dx
) p

2

u′′ = λ|u|pu

in the sense of distribution. It follows that

u′(x) = u′ (0)−
∫ x

0
f (t) dt.
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Note that

u(x) =
∫ x

0
u′(t) dt.

So, we have that

u(x) =
∫ x

0

(
u′ (0)−

∫ t

0
f (τ) dτ

)
dt = u′ (0) x−

∫ x

0

∫ t

0
f (τ) dτ dt.

Then, in view of f ∈ C[0, 1], we get that u ∈ C2[0, 1] and satisfies (1.4).

Lemma 2.2. If (λ, u) is a solution of (1.4) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of (1.4) and x∗ ∈ [0, 1] be a double zero. If ‖u‖ = 0, the conclusion
is obvious. Next, we assume that ‖u‖ 6= 0. We note that

u(x) = − λ

‖u‖p

∫ x

x∗

∫ s

x∗
|u|pu dτ ds.

Firstly, we consider x ∈ [0, x∗]. Then

|u(x)| =
∣∣∣∣− λ

‖u‖p

∫ x

x∗

∫ s

x∗
|u|pu dτ ds

∣∣∣∣ ≤ ∣∣∣∣ λ

‖u‖p

∫ x

x∗

∫ x

x∗
|u|pu dτ ds

∣∣∣∣
=

∣∣∣∣ λ

‖u‖p (x− x∗)
∫ x

x∗
|u|pu dτ

∣∣∣∣
≤ λ

‖u‖p

∫ x∗

x
|u|p+1 dτ ≤ λ‖u‖p

∞

‖u‖p

∫ x∗

x
|u| dτ ≤ λ

∫ x∗

x
|u| dτ.

By the Gronwall–Bellman inequality [7, Lemma 2.2], we get u ≡ 0 on [0, x∗]. Similarly, we can
get u ≡ 0 on [x∗, 1] and the proof is completed.

Lemma 2.3. Each nontrivial solution (λ, u) of (1.4) has a finite number of zeros.

Proof. Suppose, on the contrary, that u has a sequence zeros xn. Since [0, 1] is compact, up to
a subsequence, there exists x0 ∈ [0, 1] such that limn→+∞ xn = x0. By the continuity of u, we
have that u (x0) = limn→+∞ u (xn) = 0. So, we have that

u′ (x0) = lim
n→+∞

u (xn)− u (x0)

xn − x0
= 0.

Thus, x0 is a double zero of u. By Lemma 2.2, we get that u ≡ 0, which is a contradiction.

Let J be a strict sub-interval of I. Let λ1(J) denote the first eigenvalue−
(∫ 1

0 |u
′|2 dx

)p/2
u′′ = λ|u|pu in J,

u(x) = 0 on ∂J,

where p ∈ [0, 2].

Lemma 2.4. λ1(I) verifies the strict monotonicity property with respect to the domain I, i.e. if J is a
strict subinterval of I, then λ1(I) < λ1(J).



Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations 5

Proof. Let ϕ1 with ‖ϕ1‖ = 1 be the eigenfunction of (1.4) on J corresponding to λ1(J), and
denote by ϕ̃1 the extension by zero on I. Then we have that

1
λ1(J)

=
∫

J
|ϕ1|p+2 dx =

∫
I
|ϕ̃1|p+2 dx < sup

u∈X,‖u‖=1

∫ 1

0
|u|p+2 dx =

1
λ1(I)

.

The last strict inequality holds from the fact that ϕ̃1 vanishes in I \ J so cannot be an eigen-
function corresponding to the principal eigenvalue λ1(I).

Proof of Theorem 1.2. Let ϕ1 be a positive eigenfunction corresponding to λ1(p). It follows from
the symmetry of (1.4) and Theorem 3.1 of [9] (or Theorem 2.4 of [18]) that ϕ1(x) = ϕ1(1− x)
for x ∈ [0, 1], i.e. ϕ1 is even with respect to 1/2. For any k ≥ 2, set

ϕk(x) =



ϕ1(kx), x ∈
[
0, 1

k

]
,

−ϕ1(kx− 1), x ∈
[ 1

k , 2
k

]
,

...
...

(−)k ϕ1(kx− k + 1), x ∈
[

k−1
k , 1

]
.

Then ϕk is an eigenfunction of (1.4) associated with the eigenvalue λk(p) = kp+2λ1(p). Clearly,
the continuity of λ1(p) implies that λk(p) is continuous with respect to p.

On the other hand, let u = u(x) be an eigenfunction of (1.4) associated with some eigen-
value λ∗ > λ1(p). According to Theorem 3.1 of [9], u changes sign in (0, 1). Lemmas 2.2
and 2.3 imply that u ∈ Sk for some k ≥ 2. Without loss of generality, we may assume that
u′(0) > 0. Let

0 < τ1 < τ2 < · · · < τk−1 < 1

denote the zeros of u in (0, 1). Without loss of generality, we may assume that τ1 ≤ 1/k.
Applying Lemma 2.4 on [0, 1/k], we have that λ∗ ≥ λk. By Lemma 2 of [2], there exist integers
p and q, 1 ≤ p ≤ k− 1, 1 ≤ q ≤ k− 1, such that

τp ≤
1

q + 1
<

1
q
≤ τp+1.

Applying Lemma 2.4 on
[
τp, τp+1

]
, we have that λ∗ ≤ λk. So we have that λ∗ = λk. Fur-

thermore, if τ1 < 1/k, we have that λ∗ > λk; if τ1 > 1/k, we have that λ∗ < λk. Thus we
have τ1 = 1/k and u = c1ϕk(x) for x ∈ [0, 1/k]. Similarly, we can obtain that τi = i/k and
u = ci ϕk(x) for x ∈ [(i− 1)/k, i/k], 2 ≤ i ≤ k − 1. Let us normalize u as u′(0) = ϕ′k(0). It
follows that c1 = 1. Hence ϕ′k

( 1
k

)
= c2ϕ′k

( 1
k

)
. So we have c2 = 1. Similarly, one has ci = 1 for

all 3 ≤ i ≤ k− 1. Therefore, we have that u(x) = ϕk(x), x ∈ [0, 1].

3 Global bifurcation

Consider the following auxiliary problem−
(∫ 1

0 |u
′|2 dx

)p/2
u′′ = f (x) in (0, 1),

u(0) = u(1) = 0
(3.1)

for any p ∈ [0, 2] and a given f ∈ X∗. We have shown in [9] that problem (3.1) has a unique
weak solution. Let us denote by Rp( f ) the unique weak solution of (3.1). Then Rp : X∗ → X
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is a continuous operator. Since the embedding of X ↪→ L∞(0, 1) is compact, the restriction
of Rp to L1(0, 1) is a completely continuous (i.e., continuous and compact) operator. From
the obvious modification of Lemma 4.2 of [9], we can get the following compactness and
continuity of the operator Rp with respect to p and f .

Lemma 3.1. The operator R : [0, 2]× L1(0, 1)→ L∞(0, 1) defined by R(p, f ) = Rp( f ) is completely
continuous.

Now, we consider (1.4) again. Clearly, u is a weak solution of (1.4) if and only if u ∈ X,
λ ∈ [0,+∞) satisfy

u = Rp (λ|u|pu) = λ
1

p+1 Rp (|u|pu) := Tλ
p (u).

For any u ∈ X, we define
Kp(u) = |u|pu.

Then we see that Kp(u) ∈ L1(0, 1). We claim that Kp : X ↪→ L1(0, 1) is continuous. Assume
that un → u in X. Since embedding X ↪→ C[0, 1] is compact, we have un → u in C[0, 1]. It
follows that un(x) → u(x) for any x ∈ [0, 1]. So, we have that Kp (un) → Kp(u) in L1(0, 1).
Since Rp : L1(0, 1) → X is a compact, we have that Tλ

p = λ
1

p+1 Rp ◦ Kp : X → X is completely
continuous. Thus the Leray–Schauder degree

degX

(
I − Tλ

p , Br(0), 0
)

is well-defined for arbitrary r-ball Br(0) and λ 6= λk(p). It is well known that

degX

(
I − Tλ

0 , Br(0), 0
)
= (−1)β,

where β is the number of eigenvalues of problem (1.4) with p = 0 less than λ. As far as the
general p, we can compute it through the deformation along p.

Proposition 3.2. Let r > 0 and p ∈ [0, 2]. Then

degX

(
I − Tλ

p , Br(0), 0
)
=

{
1, if λ ∈ (0, λ1(p)) ,

(−1)k, if λ ∈ (λk(p), λk+1(p)) .

Proof. If λ ∈ (0, λ1 (p)), the conclusion has done in [9]. So we only need to prove the case
λ ∈ (λk (p) , λk+1 (p)). Since p → λk(p) is continuous, we can define a continuous function
χ : [0, 2]→ R such that λk(p) < χ(p) < λk+1(p) and λ = χ (p). Set

d(p) = degX

(
I − Tχ(p)

p , Br(0), 0
)

.

We shall show that d(p) is constant in [0, 2].

Define Sp : L∞(0, 1) → X by Sp(u) = Rp(χ(p)|u|pu). We see that Sp(u) = χ
1

p+1 (p)Rp ◦
Kp(u), where Kp(u) = |u|pu. By the definition of Kp, we can easily verify that Kp : L∞(0, 1)→
L1(0, 1) is continuous. Since Rp : L1(0, 1) → X is a compact, we get that Sp : L∞(0, 1)→ X is
completely continuous. Also we have that Tχ(p)

p = Sp ◦ i where i : X → L∞(0, 1) is the usual
inclusion. From Lemma 2.4 of [14], we obtain that

d(p) = degL∞

(
I − i ◦ Sp, Ωs, 0

)
for p ∈ [0, 2] ,
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where Ωs is any open bounded set in L∞(0, 1) containing 0. It is not difficult to verify that
the operator ϕ : [0, 2] × L∞(0, 1) → L1(0, 1) defined by ϕ(p, u) = |u|pu is continuous. This
fact, the continuity of χ(p) and Lemma 3.1 imply that (p, u) 7→ Rp (χ(p)|u|pu) = (i ◦ Sp)(u) :
[0, 2] × L∞(0, 1) → L∞(0, 1) is completely continuous. Since λk(p) < χ(p) < λk+1(p) for
any p ∈ [0, 2], we have that u − Rp (χ(p)|u|pu) 6= 0 on ∂Ωs. The invariance of the Leray–
Schauder degree under a compact homotopy follows that d(p) ≡ constant for p ∈ [0, 2]. So,
d (p) = d(0) = (−1)k, as desired.

In particular, we have the following corollary.

Corollary 3.3. Let r > 0. Then

degX

(
I − Tλ

2 , Br(0), 0
)
=

{
1, if λ ∈ (0, µ1) ,

(−1)k, if λ ∈ (µk, µk+1) ,

where µk is the k-th eigenvalue of (1.3).

Clearly, the pair (λ, u) is a solution of (1.1) if and only if (λ, u) satisfies

u = R2
(
λu3 + h(x, u, λ)

)
:= Gλ(u).

It is easy to see that Gλ : X → X is completely continuous and Gλ(0) = 0, ∀λ ∈ [0,+∞). µk is
the λk. Let X0 be any complement of span {ϕk} in X.

Theorem 3.4. The pair (µk, 0) is a bifurcation point of (1.1). Moreover, there are two distinct continua
in R× X, C +

k and C −k , consisting of the bifurcation branch Ck emanating from (µk, 0), which contain
{(µk, 0)} and each of them satisfies one of the following non-excluding alternatives:

1. it is unbounded in R× X;

2. it contains a pair
(
µj, 0

)
with j 6= k;

3. it contains a point (λ, y) ∈ R× (X0 \ {0}).

Proof. We use the abstract bifurcation result of [10] to prove this theorem. An operator L
defined on X is called homogeneous if L(cu) = cL(u) for any c ∈ R and u ∈ X. It is not
difficult to verify that L(λ) := Tλ

2 : X → X is homogeneous and completely continuous.
Let h̃(x, u, λ) = max0≤|s|≤u |h(x, s, λ)| for all x ∈ (0, 1) and λ on bounded sets, then h̃ is
nondecreasing with respect to u and

lim
u→0+

h̃(x, u, λ)

u3 = 0. (3.2)

Further it follows from (3.2) that

h(x, u, λ)

‖u‖3 ≤ h̃(x, |u|, λ)

‖u‖3
∞

≤ h̃ (x, ‖u‖∞, λ)

‖u‖3
∞

→ 0 as ‖u‖ → 0 (3.3)

uniformly for x ∈ (0, 1) and λ on bounded sets. Let

H(λ, u) = Gλ(u)− L(λ)u.

By (3.3), we can easily verify that H : R× X → X is completely continuous with H = o(‖u‖)
near u = 0 uniformly on bounded λ intervals. Noting Corollary 3.3, the desired conclusions
can be obtained by applying Theorem 1 of [10].
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By an argument similar to that of Proposition 2.1, we can get the following regularity
result.

Proposition 3.5. Any weak solution u ∈ X of problem (1.1) is also a classical solution, i.e., u ∈
C2(0, 1) ∩ C1,α[0, 1] satisfying (1.1) and u(0) = u(1) = 0.

Lemma 3.6. If (λ, u) is a solution of (1.1) and u has a double zero, then u ≡ 0.

Proof. Let u be a solution of (1.1) and x∗ ∈ [0, 1] be a double zero. If ‖u‖ = 0, the conclusion
is done. Next, we assume that ‖u‖ 6= 0. We note that

u(x) =
−1
‖u‖2

∫ x

x∗

∫ s

x∗

(
λu3 + h(x, u, λ)

)
dτ ds.

Firstly, we consider x ∈ [0, x∗]. Then

|u(x)| ≤ 1
‖u‖2

∫ x∗

x

∣∣λu3 + h(x, u, λ)
∣∣ dτ,

≤ ‖u‖
2
∞

‖u‖2

∫ x∗

x

(
|λ|+

∣∣∣∣h(τ, u(τ), λ)

u(τ)

∣∣∣∣) |u(τ)| dτ.

In view of (1.2), for any ε > 0, there exists a constant δ > 0 such that

|h(x, s, λ)| ≤ ε|s|

uniformly with respect to all x ∈ (0, 1) and fixed λ when |s| ∈ [0, δ]. Hence,

|u(x)| ≤
∫ x∗

x

(
|λ|+ ε + max

s∈[δ,‖u‖∞]

∣∣∣∣h(τ, s, λ)

s3

∣∣∣∣) |u(τ)| dτ.

By the Gronwall–Bellman inequality [7], we get u ≡ 0 on [0, x∗]. Similarly, we can get u ≡ 0
on [x∗, 1] and the proof is complete.

Proof of Theorem 1.1. Lemma 3.1 of [10] implies that there exists a bounded open neighbor-
hood Ok of (µk, 0) such that

(
C ν

k ∩Ok
)
⊆
(
Φν

k ∪ {(µk, 0)}
)

or
(
C ν

k ∩Ok
)
⊆
(
Φ−ν

k ∪ {(µk, 0)}
)
.

Without loss of generality, we assume that
(
C ν

k ∩Ok
)
⊆
(
Φν

k ∪ {(µk, 0)}
)
.

Next, we show that C ν
k ⊆

(
Φν

k ∪ {(µk, 0)}
)
. Suppose C ν

k 6⊆
(
Φν

k ∪ {(µk, 0)}
)
. Then there

exists (µ, u) ∈ C ν
k ∩

(
R× ∂Sν

k

)
such that (µ, u) 6= (µk, 0) and (λn, un)→ (µ, u) with (λn, un) ∈

C ν
k ∩

(
R× Sν

k

)
. Since u ∈ ∂Sν

k , by Lemma 3.6, u ≡ 0. Let vn := un/ ‖un‖, then vn should be a
solution of the following problem

v = R2

(
λnv3 +

h (x, un, λn)

‖un(x)‖3

)
. (3.4)

By (3.3), (3.4) and the compactness of R2 we obtain that for some convenient subsequence
vn → v0 6= 0 as n→ +∞. Now v0 verifies the equation

−
∫ 1

0

∣∣v′∣∣2 dxv′′ = µv3

and ‖v0‖ = 1. Hence µ = µj, for some j 6= k. Hence v0 ∈ Sj which is an open set in X, and
as a consequence for some n large enough, un ∈ Sj, and this is a contradiction. Thus, we have
that

C ν
k ⊆ (Φν

k ∪ {(µk, 0)}) .
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Furthermore, by an argument similar to the above, we can easily show that Ck ∩ (R× {0}) =
{(µk, 0)}. So Theorem 1 of [10] implies that Ck is unbounded.

We claim that both C +
k and C −k are unbounded. Introduce the following auxiliary problem−
(∫ 1

0 |u
′|2 dx

)
u′′ = λu3 + h̃(x, u, λ) in (0, 1),

u(0) = u(1) = 0,

where h̃ is defined by

h̃(x, u, λ) =

{
h(x, u, λ), if u′(0) > 0,

−h(x,−u, λ), if u′(0) < 0.

The previous argument shows that an unbounded continuum C̃k bifurcates from (µk, 0) and
can be split into C̃ +

k and C̃ −k with C̃ ν
k connected, C̃ ν

k ⊆
(
{(µk, 0)} ∪

(
R× Sν

k

))
. It is easy

to see that C̃ −k = −C̃ +
k . It follows that both C̃ +

k and C̃ −k are unbounded. It is clear that
C̃ +

k ⊆ C +
k . Therefore C +

k must be unbounded. A symmetric argument shows that C −k is also
unbounded.

4 Nodal solutions

In this section, we apply Theorem 1.1 to study the existence of nodal solutions for (1.5).

Proof of Theorem 1.3. Let g : (0, 1)×R→ R be a continuous function such that

f (x, s) = f0s3 + g(x, s)

with

lim
s→0

g(x, s)
s3 = 0 uniformly with respect to all x ∈ (0, 1). (4.1)

From (4.1), we can see that λg satisfies the assumptions of (1.2). Now, using Theorem 1.1, we
have that there are two distinct unbounded continua, C +

k and C −k emanating from (µk/ f0, 0),
such that

C ν
k ⊂ ({(µk/ f0, 0)} ∪Φν

k) .

It is sufficient to show that C ν
k joins (µk/ f0, 0) to (µk/ f∞, ∞). Let (ξn, un) ∈ C ν

k where
un 6≡ 0 satisfies |ξn|+ ‖un‖ → +∞. Proposition 5.1 of [8] implies that (0,0) is the only solution
of (1.5) for λ = 0, we have C ν

k ∩ ({0} × X) = ∅. It follows that ξn > 0 for all n ∈N.
Next we show that un is one-signed in some interval (α, β) ⊆ (0, 1) with α < β. Let

0 < τ(1, n) < τ(2, n) < · · · < τ(k− 1, n) < 1

denote the zeros of un in (0, 1). Let τ(0, n) = 0 and τ(k, n) = 1. Then, after taking a subse-
quence if necessary,

lim
n→+∞

τ(l, n) = τ(l, ∞), l ∈ {0, 1, . . . , k}.

We claim that there exists l0 ∈ {0, 1, . . . , k} such that

τ (l0, ∞) < τ (l0 + 1, ∞) .
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Otherwise, we have that

1 = Σk−1
l=0 (τ(l + 1, n)− τ(l, n))→ Σk−1

l=0 (τ(l + 1, ∞)− τ(l, ∞)) = 0.

This is a contradiction. Let (α, β) ⊂ (τ (l0, ∞) , τ (l0 + 1, ∞)) with α < β. For all n sufficiently
large, we have (α, β) ⊂ (τ (l0, n) , τ (l0 + 1, n)). So un does not change its sign in (α, β).

We claim that there exists a constant M such that ξn ∈ (0, M] for n ∈ N large enough. On
the contrary, we suppose that limn→+∞ ξn = +∞. Since (ξn, un) ∈ C ν

k , it follows that

‖un‖2 u′′n + ξnan(x)u3
n = 0 in (0, 1),

where

an(x) =

{ f (x,un)
u3

n
, if un(x) 6= 0,

f0, if un(x) = 0.

From (f1)–(f2), we can see that f (x,un)
un
≥ σ for some σ > 0 and all x ∈ (0, 1), n ∈N. So, we have

that ξnan(x) = +∞ for all x ∈ (0, 1). Applying Theorem 4.1 of [3] on [α, β] with g(x) ≡ µ1, we
have that un must change its sign in (α, β) for n large enough. This is a contradiction.

Therefore, we get that
‖un‖ → +∞ as n→ +∞.

Let h : (0, 1)×R→ R be a continuous function such that

f (x, s) = f∞s3 + h(x, s)

with

lim
|s|→+∞

h(x, s)
s3 = 0, lim

|s|→0

h(x, s)
s3 = f0 − f∞ uniformly with respect to all x ∈ (0, 1).

Then (ξn, un) satisfies
un = R2

(
ξn f∞u3

n + h (x, un)
)

.

Dividing the above equation by ‖un‖ and letting un = un/ ‖un‖, we get that

un = R2

(
ξn f∞u3

n +
h (x, un)

‖un‖3

)
.

Let
h̃(x, u) = max

0≤|s|≤u
|h(x, s)| for any x ∈ (0, 1),

then h̃ is nondecreasing with respect to u. Define

h(x, u) = max
u/2≤|s|≤u

|h(x, s)| for any x ∈ (0, 1).

Then we can see that

lim
u→+∞

h(x, u)
u3 = 0 and h̃(x, u) ≤ h̃

(
x,

u
2

)
+ h(x, u).

It follows that

lim sup
u→+∞

h̃(x, u)
u3 ≤ lim sup

u→+∞

h̃
(
x, u

2

)
u3 = lim sup

u/2→+∞

h̃
(
x, u

2

)
8
( u

2

)3 .
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So we have

lim
u→+∞

h̃(x, u)
u3 = 0. (4.2)

Further it follows from (4.2) that

h (x, un)

‖un‖3 ≤
h̃ (x, |un|)
‖un‖3 ≤ h̃ (x, ‖un‖∞)

‖un‖3 ≤ c3 h̃ (x, c ‖un‖)
c3 ‖un‖3 → 0 as n→ +∞

uniformly for x ∈ (0, 1).
By the compactness of R2 we obtain that

− ‖u‖2 u′′ = µ f∞u3,

where u = limn→+∞ un and µ = limn→+∞ ξn, again choosing a subsequence and relabel-
ing it if necessary. It follows from u = limn→+∞ un and the triangle inequality that ‖u‖ =

limn→+∞ ‖un‖. Since ‖un‖ ≡ 1, we obtain that ‖u‖ = 1. It is clear that u ∈ C ν
k . Theorem 1.2 of

[3] shows that µ = µk/ f∞. Therefore, C joins (µk/ f0, 0) to (µk/ f∞, ∞).

From Theorem 1.3, we can easily get the following corollary.

Corollary 4.1. Assume that f satisfies (f1)–(f2). Then for

λ ∈
(

µk

f0
,

µk

f∞

)
∪
(

µk

f∞
,

µk

f0

)
,

problem (1.5) possesses at least two solutions u+
k and u−k such that u+

k has exactly k− 1 simple zeros
in (0, 1) and is positive near 0, and u−k has exactly k− 1 simple zeros in (0, 1) and is negative near 0.
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