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Abstract. In this paper we deal with a system of partial differential equations de-
scribing a steady motion of an incompressible magnetohydrodynamic fluid, where the
extra stress tensor is induced by a potential with p-structure (p = 2 corresponds to the
Newtonian case). By using a fixed point argument in an appropriate functional setting,
we proved the existence and uniqueness of strong solutions for the problem in a smooth
domain Ω ⊂ Rn (n = 2, 3) under the conditions that the external force is small in a
suitable norm.
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1 Introduction and main result

Magnetohydrodynamics (MHD) concerns the interaction of electrically conductive fluids and
electromagnetic fields. The system of partial differential equations in MHD are basically
obtained through the coupling of the dynamical equations of the fluids with the Maxwell’s
equations which is used to take into account the effect of the Lorentz force due to the mag-
netic field, it has spanned a very large range of applications [21, 24, 25]. By neglecting the
displacement current term, a commonly used simplified MHD system could be described by

ut + (u · ∇)u− div τ(Du) +∇p =
1
µ
(∇× b)× b + f , in QT,

bt +
1
µ

curl
(

1
σ

curl b
)
= curl(u× b), in QT,

div u = 0, div b = 0, in QT,

(1.1)

where QT = Ω × (0, T), the unknown functions u = (u1(x, t), u2(x, t), . . . , un(x, t)) denotes
the velocity of the fluid, b = (b1(x, t), b2(x, t), . . . , bn(x, t)) the magnetic field, p = p(x, t)
the pressure and f = ( f1(x, t), f2(x, t), . . . , fn(x, t)) the external force applied to the fluid.
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Also, τ = (τij) is the stress tensor depending on the strain rate tensor Du = 1
2 (∇u +∇uT),

µ > 0 and σ > 0 denotes the permeability coefficient and the electric conductivity coefficient
respectively. For the sake of simplicity, in this work, we take µ = 1 and σ = 1.

Due to the conventional belief that the Navier–Stokes equations are an accurate model for
the motion of incompressible fluids in many practical situations, the majority of the known
work have assumed that the stress tensor τ(Du) is a linear function of the strain rate Du.
In this way we obtain the conventional system for MHD, and this classical model has been
extensively studied. For instance, Duvaut and Lions [7] established the local existence and
uniqueness of a solution in the Sobolev space Hs(RN)(s ≥ N). They also proved the global
existence of a solutions to this system with small initial data. Sermange and Temam [28]
proved the existence of a unique global solution in the two space dimensions. For the zero
magnetic diffusion case, Lin, Xu and Zhang [22] and Xu and Zhang [29] established the global
well-posedness in two and three dimensional space, respectively, under the assumption that
the initial data are sufficiently close to the equilibrium state. The global existence of smooth
solutions was proved by Lei [18] for the ideal MHD with axially symmetric initial datum in
Hs(R3) with s ≥ 2. For more details, one can also refer [3–5,8,9,11,13–16,23] and the reference
cited therein.

In recent years, the flow of non-Newtonian fluids (i.e. the stress tensor τ(Du) being a non-
linear function of Du ) has gained much importance in numerous technological applications.
Further, the motion of the non-Newtonian fluids in the presence of a magnetic field in differ-
ent contexts has been studied by several authors (see [2, 6, 26]). A typical form of the stress
tensor τ(Du) is of some p– structure with Du which were firstly proposed by Ladyzhenskaya
in [19,20]. For the MHD equations of non-Newtonian type (1.1), the known results are limited
and here we only recall two results closely related to ours. In case that τ(Du) = |Du|p−2Du
for p ≥ 5

2 , Samokhin proved in [27] the existence of weak solutions by using Galerkin method
and the monotone theory, which solve the equations in the sense of distributions and satisfy
the following energy inequality

sup
0≤t≤T

(‖u(t)‖2
2 + ‖b(t)‖2

2) + 2
∫ T

0
(‖∇u(t)‖p

p + ‖∇b(t)‖2
2)dt ≤ (‖u0‖2

2 + ‖b0‖2
2).

Later on, Gunzburger and his collaborators considered (1.1) with τ(Du) = (1 + |Du|p−2)Du
for the case of bounded or periodic domains, and they showed the existence and uniqueness
of a weak solutions, see [12] for more details.

In this paper, in a smooth bounded domain Ω ⊂ Rn (n = 2 or 3), we consider a steady
incompressible MHD equations of non-Newtonian fluids described by

−div
[
2µ(1 + |Du|2)

p−2
2 Du

]
+∇p = f − div(u⊗ u) + (∇× b)× b, x ∈ Ω,

−∆b = (b · ∇)u− (u · ∇)b, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

(1.2)

supplemented by the boundary conditions

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0, (1.3)

where p > 1, n is the unit outward normal vector of ∂Ω.

Remark 1.1. Since u and b are divergence free (i.e. div u = 0, div b = 0), an elementary
computations leads to the formulas

curl curl b = −∆b, curl(u× b) = (b · ∇)u− (u · ∇)b. (1.4)
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The aim of this paper is to prove the existence and uniqueness of strong solutions to
system (1.2)–(1.3) under the assumption that the Lq-norm of the external force field f is small
in a suitable sense. Our approach is based on regularity results for the Stokes problem and
magnetic equation, and a fixed-point argument.

Throughout the paper, for m ∈N, the standard Lebesgue spaces are denoted by Lq(Ω) and
their norms by ‖ · ‖q, the standard Sobolev spaces are denoted by Wm,q(Ω) and their norms by
‖ · ‖m,q. We also denote by Wm,q

0 (Ω) the closure in Wm,q(Ω) of C∞
0 (Ω). W−1,q(Ω) denotes the

dual of W1,q
0 (Ω) and their norms by ‖ · ‖−1,q;Ω. For x, y ∈ R we denote (x, y)+ = max{x, y},

x+ = max{x, 0}. We introduce the constants

Sp := (|p− 2|, 2)+, rp :=
1 + (p− 3)+ − (p− 4)+

2
, γp :=

[(p, 3)+ − 2](p,3)+−2

[(p, 3)+ − 1](p,3)+−1
. (1.5)

We also introduce the space

V := {u ∈ C∞
0 (Ω), div u = 0};

Vp := {u ∈W1,p
0 (Ω) : div u = 0};

Vm,p := {v ∈W1,p
0 (Ω) ∩Wm,p(Ω) : div v = 0 };

W := {b ∈W1,2(Ω) : div b = 0 , b · n|∂Ω = 0}.

Also, for q > r > n and δ > 0, let us denote by Bδ the convex set defined by

Bδ :=
{
(ξ, η) ∈ V2,q × (W2,r(Ω) ∩W) : CE‖∇ξ‖1,q ≤ δ, CẼ‖∇η‖1,r ≤ δ

}
, (1.6)

where CE is the norm of the embedding of W1,q(Ω) into L∞(Ω) and CẼ is the norm of the
embedding of W1,r(Ω) into L∞(Ω), also Cp denotes the Poincaré constant corresponding to
the general Poincaré inequality ‖ · ‖s ≤ Cp‖∇(·)‖s. We consider the space V2,q ×W2,r(Ω)

endowed with the norm

‖(ξ, η)‖1,q,r := max{‖∇ξ‖1,q, ‖∇η‖1,r}.

Now, we formulate the main theorem of this paper.

Theorem 1.2. Assume that q > r > n, p > 1, µ > 0, and let f ∈ Lq(Ω). There exist positive
constant C = C(C0, Cp, CE, CẼ, C−1, c2) such that if

C

[(
1 +

1
µ

)C‖ f‖q

µ
+ Sp

(C‖ f‖q

µ

)2rp(
1 +

C‖ f‖q

µ

)(p−4)+
]
<

1
4(p−2,1)+

, (1.7)

then, problem (1.2)–(1.3) has a unique strong solution (u, b) ∈ V2,q ×W2,r(Ω).

Remark 1.3. As usual, the pressure π has disappeared from the notion of solution. Actually,
the pressure may be recovered by de Rham Theorem at least in L2(Ω), such that the triple
(u, π, b) satisfies equations (1.2)–(1.3) almost everywhere (see [11]).

The rest of our paper is organized as follows: in Section 2, we review some known results
and Section 3 is devoted to proving the main theorem to problem (1.2)–(1.3).
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2 Preliminary lemmas

In this section, we recall some basic facts which will be used later.

Lemma 2.1 ([10, Theorem 6.1, pp. 225]). Let m ≥ −1 be an integer and let Ω be a bounded domain
in Rn (n = 2, 3) with boundary ∂Ω of class Ck with k = (m + 2, 2)+. Then for any ψ ∈ Wm,ρ(Ω),
the following system 

−∆u +∇π = ψ, x ∈ Ω,

div u = 0, x ∈ Ω,

u|∂Ω = 0,

admits a unique solution [u, π] ∈Wm+2,ρ(Ω)×Wm+1,ρ(Ω). Moreover, the following estimate holds

‖∇u‖m+1,ρ + ‖π‖m+1,ρ/R ≤ Cm‖ψ‖m,ρ,

where Cm = Cm(n, ρ, Ω) is a positive constant.

Lemma 2.2 ([1]). Let rp, γp are given by (1.5) and let G : R+ → R be defined by

G(δ) = Aδ2 − δ + EδH(δ) + D,

where A, E, D are positive constants and H(x) = x2rp(1 + x)(p−4)+ . Thus, if the following assertion
holds

AD + ED2rp(1 + D)(p−4)+ ≤ γp,

then G possesses at least one root δ0. Moreover, δ0 > D and for every β ∈ [1, 2] the following estimate
holds

β− 1
β

δ0 +
2− β

β
Aδ2

0 +
2rp + 1− β

β
Eδ0H(δ0) +

E(p− 4)+

β
δ

2rp+2
0 (1 + δ0)

(p−4)+−1 ≤ D.

Lemma 2.3 ([17]). Let X and Y be Banach spaces such that X is reflexive and X ↪→ Y. Let B be a
non-empty, closed, convex and bounded subset of X and let T : B→ B be a mapping such that

‖T(u)− T(v)‖Y ≤ K‖u− v‖Y, ∀ u, v ∈ B (0 < K < 1),

then T has a unique fixed point in B.

3 Proof of Theorem 1.2

Our proof relies on a Banach fixed point theorem. Toward this aim, we first reformulate the
problem as follows

−µ∆u +∇p = f − div(u⊗ u) + (∇× b)× b + div[2µσ(|Du|2)Du], x ∈ Ω,

−∆b = (b · ∇)u− (u · ∇)b, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0,

(3.1)

where σ(x) = (1 + x)
p−2

2 − 1.
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Given (ξ, η) ∈ V2,q ×W2,r(Ω), we consider the following problem
−µ∆u +∇p = f − div(ξ ⊗ ξ) + (∇× η)× η+ div[2µσ(|Dξ|2)Dξ], x ∈ Ω,

−∆b = (η · ∇)ξ − (ξ · ∇)η, x ∈ Ω,

div u = 0, div b = 0, x ∈ Ω,

u|∂Ω = 0, b · n|∂Ω = 0, (∇× b)× n|∂Ω = 0.

(3.2)

From Lemma 2.1 and Proposition 2.30 in [11], there exists a unique solution (u, b) ∈ V2,q ×
W2,r(Ω) to (3.2). We define the mapping

T : (ξ, η)→ (u, b).

Our purpose now is to prove that TBδ0
is a contraction from Bδ0 to itself for some δ0 > 0.

Here Bδ0 is the closed ball defined in (1.6).

Proposition 3.1. Let q > r > n, p > 1, µ > 0, and let f ∈ Lq(Ω). There exists a positive constant
M1 = M1(C0, Cp, CE, CẼ) such that if

M2
1‖ f‖q

µ2 + M1Sp

(
M1‖ f‖q

µ

)2rp (
1 +

M1‖ f‖q

µ

)(p−4)+

≤ γp, (3.3)

then T(Bδ0) ⊆ Bδ0 for some δ0 > 0.

Proof. Let (ξ, η) ∈ Bδ. From Lemma 2.1, u ∈ V2,q and it satisfies

‖∇u‖1,q ≤
C0

µ

(
‖ f‖q + ‖ξ · ∇ξ‖q + ‖(∇× η)× η‖q + ‖div[2µσ(|Dξ|2)Dξ]‖q

)
. (3.4)

Notice that

‖(∇× η)× η‖q ≤ ‖η‖∞‖∇η‖q ≤ CẼ‖η‖1,r‖∇η‖1,r

≤ δ(Cp + 1)‖∇η‖r ≤ δ(Cp + 1)‖∇η‖1,r

≤
(Cp + 1)

CẼ
δ2, (3.5)

reasoning as in [1], we could obtain

‖ξ · ∇ξ‖q + ‖div[2µσ(|Dξ|2)Dξ]‖q ≤
Cp

CE
δ2 +

4µSp

CE
δH(δ). (3.6)

Combining (3.4), (3.5) and (3.6), we get

‖∇u‖1,q ≤
M1

µ

(
‖ f‖q + δ2 + µSpδH(δ)

)
,

where M1 = C0 max
{

1, Cp
CE

+
(Cp+1)

CẼ
, 4

CE

}
.

On the other hand, by Proposition 2.30 in [11], there exists a constant c1 > 0 such that

‖∇b‖1,r ≤ c1 [‖η · ∇ξ‖r + ‖ξ · ∇η‖r]

≤ c1
[
CẼ‖η‖1,r‖∇ξ‖1,q + CE‖ξ‖1,q‖∇η‖1,r

]
≤ c1

[
CẼ(Cp + 1)‖∇η‖r‖∇ξ‖1,q + CE(Cp + 1)‖∇ξ‖q‖∇η‖1,r

]
≤ c1

[
CẼ(Cp + 1)‖∇η‖1,r

δ

CE
+ CE(Cp + 1)‖∇ξ‖1,q

δ

CẼ

]
≤ c1

[
(Cp + 1)

CE
δ2 +

(Cp + 1)
CẼ

δ2
]

≤ 2M2δ2,

(3.7)
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where M2 = c1 max
{ (Cp+1)

CE
, (Cp+1)

CẼ

}
. In order to ensure that T(Bδ) ⊆ Bδ, it is enough to show

that

‖∇u‖1,q ≤
M1

µ

(
‖ f‖q + δ2 + µSpδH(δ)

)
≤ δ,

‖∇b‖1,r ≤ 2M2δ2 ≤ δ.
(3.8)

Using Lemma 2.2 with A = M1
µ , E = M1Sp and D =

M1‖ f‖q
µ , there exists δ1 >

M1‖ f‖q
µ such

that
M1

µ

(
‖ f‖q + δ2

1 + µSpδ1H(δ1)
)
≤ δ1,

provided that
AD + ED2rp(1 + D)(p−4)+ ≤ γp,

which holds from the hypothesis (3.3). Also, it holds (β = 2 in Lemma 2.2) that

δ1 ≤
2M1‖ f‖q

µ
.

On the other hand, we reformulate the inequality (3.8)2 as

2M2δ2 − δ ≤ 0. (3.9)

Due to
∆ = 1 > 0,

we deduce that for some δ, the inequality (3.9) is valid.
Take the constant D to satisfy δ− < D < 2D < δ+, where

δ± =
1

4M2
±
√

1 =
1± 4M2

4M2
.

Moreover, given that for every δ ∈ [δ−, δ+], the inequality (3.9) is valid, we can choose δ2 ∈
(δ−, D) such that

2M2δ2
2 ≤ δ2.

In conclusion, we obtain

δ2 <
M1‖ f‖q

µ
< δ1 ≤

2M1‖ f‖q

µ
.

Thus, taking δ0 = δ1 we obtain that T(Bδ0) ⊆ Bδ0 .

Proposition 3.2. There is a positive constant m = m(C−1, Cp, c2, CE, CẼ) such that if

m

[(
1 +

1
µ

)
M1‖ f‖q

µ
+ Sp

(
M1‖ f‖q

µ

)2rp (
1 +

M1‖ f‖q

µ

)(p−4)+
]
<

1
4(p−2,1)+

, (3.10)

then T : Bδ0 → Bδ0 is a contraction in W1,q
0 (Ω)×W1,r(Ω).
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Proof. Let (ξ, η), (ξ̂, η̂) ∈ Bδ0 and let (u, b), (û, b̂) be their respective images under T. Then,
from (3.2) we obtain

−µ∆(u− û) +∇(p− p̂) = F, x ∈ Ω,

−∆(b− b̂) = G, x ∈ Ω,

div(u− û) = 0, div(b− b̂) = 0, x ∈ Ω,

(u− û)|∂Ω = 0, (b− b̂) · n|∂Ω = 0, (∇× (b− b̂))× n|∂Ω = 0,

where

F := div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ) + (∇× η)× η− (∇× η̂)× η̂+ 2µ div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂],

G := (η · ∇)ξ − (η̂ · ∇)ξ̂ + (ξ̂ · ∇)η̂− (ξ · ∇)η.

Applying Lemma 2.1 with ψ = F we obtain

‖∇(u− û)‖q ≤
C−1

µ
(‖div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖−1,q + ‖(∇× η)× η− (∇× η̂)× η̂‖−1,q

+ 2µ‖div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖−1,q).
(3.11)

Notice that

‖(∇× η)× η− (∇× η̂)× η̂‖−1,q

≤ ‖(∇× η)× η− (∇× η̂)× η̂‖r

= ‖(∇× η)× η− (∇× η̂)× η+ (∇× η̂)× η− (∇× η̂)× η̂‖r

≤ ‖∇(η− η̂)‖r‖η‖∞ + ‖∇η̂‖r‖η− η̂‖∞

≤ CẼ‖η‖1,r‖∇(η− η̂)‖r + ‖∇η̂‖1,rCẼ‖η− η̂‖1,r

≤ CẼ(Cp + 1)‖∇η‖r‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r

≤ CẼ(Cp + 1)‖∇η‖1,r‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r

≤ δ0(Cp + 1)‖∇(η− η̂)‖r + δ0(Cp + 1)‖∇(η− η̂)‖r,

= 2δ0(Cp + 1)‖∇(η− η̂)‖r,

(3.12)

reasoning as in [1], we obtain

‖div(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖−1,q ≤ C‖(ξ̂ ⊗ ξ̂ − ξ ⊗ ξ)‖q

≤ CCp(C
q
p + 1)

1
q δ0‖∇(ξ − ξ̂)‖q,

(3.13)

2µ‖ div[σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖−1,q ≤ Cµ‖ [σ(|Dξ|2)Dξ − σ(|Dξ̂|2)Dξ̂]‖q

≤ CµSpH(2δ0)‖∇(ξ − ξ̂)‖q.
(3.14)

From (3.11)–(3.14) we obtain

‖∇(u− û)‖q ≤ M3

[
2δ0

µ
+ SpH(2δ0)

]
max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}, (3.15)

where M3 = C−1 max
{

CCp(C
q
p + 1)

1
q , 2(Cp + 1), C

}
.



8 W. W. Shi and C. J. Wang

On the other hand, again by Proposition 2.30 in [11], there exists a constant c2 > 0 such
that

‖∇(b− b̂)‖r ≤ ‖∇(b− b̂)‖1,r

≤ c2
[
‖(η · ∇)ξ − (η̂ · ∇)ξ̂‖r + ‖(ξ̂ · ∇)η̂− (ξ · ∇)η‖r

]
= c2

[
‖(η · ∇)ξ − (η̂ · ∇)ξ + (η̂ · ∇)ξ − (η̂ · ∇)ξ̂‖r

+ ‖(ξ̂ · ∇)η̂− (ξ̂ · ∇)η+ (ξ̂ · ∇)η− (ξ · ∇)η‖r

]
≤ c2

[
‖η− η̂‖∞‖∇ξ‖r + ‖η̂‖∞‖∇(ξ − ξ̂)‖r

+ ‖ξ̂‖∞‖∇(η̂− η)‖r + ‖ξ̂ − ξ‖∞‖∇η‖r

]
≤ c2

[
CẼ‖η− η̂‖1,r‖∇ξ‖r + CẼ‖η̂‖1,r‖∇(ξ − ξ̂)‖r

+ CE‖ξ̂‖1,q‖∇(η̂− η)‖r + CE‖ξ̂ − ξ‖1,q‖∇η‖r

]
≤ c2

[
CẼ(Cp + 1)‖∇(η− η̂)‖r‖∇ξ‖1,q + CẼ(Cp + 1)‖∇η̂‖r‖∇(ξ − ξ̂)‖q

+ CE(Cp + 1)‖∇ξ̂‖q‖∇(η̂− η)‖r + CE(Cp + 1)‖∇(ξ̂ − ξ)‖q‖∇η‖r

]
≤ c2

[
CẼ(Cp + 1)‖∇ξ‖1,q‖∇(η− η̂)‖r + CẼ(Cp + 1)‖∇η̂‖1,r‖∇(ξ − ξ̂)‖q

+ CE(Cp + 1)‖∇ξ̂‖1,q‖∇(η̂− η)‖r + CE(Cp + 1)‖∇η‖1,r‖∇(ξ̂ − ξ)‖q

]
≤ c2

[
CẼ(Cp + 1)

CE
δ0‖∇(η− η̂)‖r + (Cp + 1)δ0‖∇(ξ − ξ̂)‖q

+(Cp + 1)δ0‖∇(η− η̂)‖r +
CE(Cp + 1)

CẼ
δ0‖∇(ξ̂ − ξ)‖q

]
≤ 4M4δ0 max

{
‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r

}
,

(3.16)

where M4 = c2 max{CẼ(Cp+1)
CE

, (Cp + 1), CE(Cp+1)
CẼ

}.
Combining (3.15) and (3.16), we deduce that

max{‖∇(u− û)‖q, ‖∇(b− b̂)‖r}

≤
(

2M3δ0

µ
+ 4M4δ0 + M3SpH(2δ0)

)
·max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}.

From here, and taking into account that δ0≤
2M1‖ f‖q

µ ,H is nondecreasing,H(4y)≤ 4(p−2,1)+H(y)
and defining m = max{2M3, 4M4}, we get

max{‖∇(u− û)‖q, ‖∇(b− b̂)‖r}

≤ m
[

δ0

µ
+ δ0 + SpH(2δ0)

]
max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}

≤ m
[

2M1‖ f‖q

µ2 +
2M1‖ f‖q

µ
+ Sp4(p−2,1)+H

(
M1‖ f‖q

µ

)]
·max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}
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= m

[(
1 +

1
µ

)
2M1‖ f‖q

µ
+ 4(p−2,1)+Sp

(
M1‖ f‖q

µ

)2rp (
1 +

M1‖ f‖q

µ

)(p−4)+
]

·max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}

≤ 4(p−2,1)+m

[(
1 +

1
µ

)
M1‖ f‖q

µ
+ Sp

(
M1‖ f‖q

µ

)2rp (
1 +

M1‖ f‖q

µ

)(p−4)+
]

·max{‖∇(ξ − ξ̂)‖q, ‖∇(η− η̂)‖r}. (3.17)

Considering the space Y := W1,q
0 (Ω) ×W1,r(Ω), with norm max{‖∇ · ‖q, ‖∇ · ‖r}, the

inequality (3.17) implies that

‖T
(

ξ̂, η̂
)
− T (ξ, η) ‖Y ≤ 4(p−2,1)+m

[(
1 +

1
µ

)
M1‖ f‖q

µ

+Sp

(
M1‖ f‖q

µ

)2rp (
1 +

M1‖ f‖q

µ

)(p−4)+
] ∥∥∥(ξ̂, η̂

)
− (ξ, η)

∥∥∥
Y

.

From which and hypothesis (3.10), we obtain T : Bδ0 → Bδ0 is a contraction in W1,q
0 (Ω) ×

W1,r(Ω).

Proof of Theorem 1.2. Notice that for p ≤ 3, γp = 1/4 = 1/4(p−2,1)+ and for p > 3, γp >

1/4(p−2,1)+ . Thus, by taking C = (M1, m)+ and because of (1.7) implies (3.3) and (3.10),
Propositions 3.1 and Propositions 3.2 yield that the mapping T : Bδ0 → Bδ0 is a contraction in
W1,q

0 (Ω)×W1,r(Ω).
Applying Lemma 2.3 with X = V2,q ×W2,r(Ω), Y = W1,q

0 (Ω) ×W1,r(Ω) and B = Bδ0 ,
we could obtain that T has a unique fixed point in Bδ0 and this implies the original problem
(1.2)–(1.3) has a unique strong solution (u, b) ∈ V2,q ×W2,r(Ω).

The proof of Theorem 1.2 is finished.
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[25] R. V. Polovin, V. P. Demutskiǐ, Fundamentals of magnetohydrodynamics, Consultants Bu-
reau, New York, 1990.

[26] T. Sarpkaya, Flow of non-Newtonian fluids in a magnetic field. AIChE Journal 7(1961),
No. 2, 324–328. https://doi.org/10.1002/aic.690070231

[27] V. N. Samokhin, On a system of equations in the magnetohydrodynamics of nonlinearly
viscous media, Differential Equations 27(1991), No. 5, 628–636. MR1117118

[28] M. Sermange, R. Temam, Some mathematical questions related to the MHD equa-
tions, Comm. Pure Appl. Math. 36(1983), No. 5, 635–664. https://doi.org/10.1002/cpa.
3160360506; MR0716200; Zbl 0524.76099

[29] L. Xu, P. Zhang, Global small solutions to three-dimensional incompressible magnetohy-
drodynamical system, SIAM J. Math. Anal. 47(2015), No. 1, 26–65. https://doi.org/10.
1137/14095515x; MR3296601; Zbl 1352.35099

https://doi.org/10.3934/dcdss.2010.3.311
https://doi.org/10.3934/dcdss.2010.3.311
https://www.ams.org/mathscinet-getitem?mr=2610567
https://zbmath.org/?q=an:1193.35157
https://doi.org/10.1016/j.jde.2015.04.017 
https://doi.org/10.1016/j.jde.2015.04.017 
https://www.ams.org/mathscinet-getitem?mr=3360670 
https://zbmath.org/?q=an:1319.35195
https://www.ams.org/mathscinet-getitem?mr=0254401
https://zbmath.org/?q=an:0184.52603
https://doi.org/10.1016/j.jde.2015.06.034
https://doi.org/10.1016/j.jde.2015.06.034
https://www.ams.org/mathscinet-getitem?mr=3377532
https://zbmath.org/?q=an:1321.35138
https://doi.org/10.1002/cpa.21506
https://doi.org/10.1002/cpa.21506
https://www.ams.org/mathscinet-getitem?mr=3168121
https://zbmath.org/?q=an:1298.35153
https://zbmath.org/?q=an:0714.76003
https://doi.org/10.1002/aic.690070231
https://www.ams.org/mathscinet-getitem?mr=1117118
https://doi.org/10.1002/cpa.3160360506
https://doi.org/10.1002/cpa.3160360506
https://www.ams.org/mathscinet-getitem?mr=0716200
https://zbmath.org/?q=an:0524.76099
https://doi.org/10.1137/14095515x
https://doi.org/10.1137/14095515x
https://www.ams.org/mathscinet-getitem?mr=3296601
https://zbmath.org/?q=an:1352.35099

	Introduction and main result
	Preliminary lemmas
	Proof of Theorem 1.2

