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Abstract

We prove oscillation theorems for the nonlinear delay differential equation

/
(W @12y ®) + a0 @) yr) =0, ¢t >0,
where 8 > 1, a > 1, ¢(t) > 0 and locally integrable on [t., 00), 7(t) is a
continuous function satisfiying 0 < 7(t) < ¢ and lim;—.o7(¢) = oo. The
results obtained essentially improve the known results in the literature and
can be applied to linear and half-linear delay type differential equations.
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Introduction

In the last decades, there has been an increasing interest in obtaining suffi-
cient conditions for the oscillation and/or nonoscillation of solutions for dif-
ferent classes of second order differential equations with or without deviating
arguments. For interested readers we refer to the papers [7, 8, 12, 13, 15] and
the references quoted therein.
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Before we continue with the description of the content of this paper, we
present a short survey of the most basic results in the literature.
Let us consider the following linear differential equation

y' +at)y =0, t>ty >t >0, (1)

where ¢(t) > 0 is locally integrable on [tg, 00).
In 1948, Hille [6] established the following results:
Theorem A. If q € L![ty,00) and

t—oo

e 1
lim sup t/ q(s)ds < 7 (2)
t

then equation (1) is nonoscillatory.
Theorem B. If ¢ € L'[ty, ) and

lim inf t/ q(s)ds > 1, (3)
t

t—o00 4

then equation (1) is oscillatory.
In 1997, Huang [7] obtained the following interval criteria:
Theorem C. If there exists to > t,. such that for each n € Ng = {0,1,2,...},
q(t) satisfies
2n+1t0 90
o(e)ds < 5 (1)

PAG

where 0y = 3 — 2v/2, then equation (1) is nonoscillatory.
Theorem D. If there exists to > t. such that for each n € Ng = {0,1,2,...},

q(t) satisfies
2" 1o 0
ds > )
/27%0 a(s)ds 2 271’ 5)

where 0 > Oy, then equation (1) is oscillatory.

In 2004, by replacing the sequence {2"} in Theorems C and D by {\"} with
A > 1, Wong [15] generalized Theorems C and D as follows:
Theorem E. Let A\ > 1. If there exists some tg such that for each n € Ny =
{0,1,2,...}, q(t) satisfies

A 9

<« 7
At alo)ds < (A = D)Antity’ (6)

where 6 < ko(X\) = (VX —1)2, then equation (1) is nonoscillatory.
Theorem F. Let A\ > 1. If there exists some tg such that for each n € Ny =
{0,1,2,...}, q(¢t) satisfies

An+1t0 9

1O B Y
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where 0 > ko()\), then equation (1) is oscillatory.
Furthermore, Wong [15] extended the oscillation criteria (3) and (7) for
equation (1) to the following linear delay differential equation

y'(t) +a@y(r(t) =0,  t=to, (8)

where ¢(t) > 0 and locally integrable on [tg, 00), and 7(¢) is a continuous function
satisfying 0 < 7(t) < ¢ and lim;—, oo 7(t) = 0.

In 1987, Yan [16] proved the following result for equation (8), but Wong gave
an alternative and simpler proof in [15].
Theorem G. Suppose that for all sufficiently large t, q(t) satisfies

o° 7(8) 0

—~ds > — 9

| a9 T )

for some fized constant 6 > i, then all solutions of equation (8) are oscillatory.
Wong also proved the extension of Theorem F for equation (8).

Theorem H. Let A\ > 1. If there exists to > t. and for each n € Ny =

{0,1,2,...}, q(t) satisfies

Antly
0 7(s) 0
>
A LA e, (10)

where 0 > ko(N). Then all solutions of equation (8) are oscillatory.
Now, let us consider the following half-linear differential equation

(/@1 ) + a0 Ol 2yt =0, 1>, (1)

where a > 1, ¢(t) > 0 is locally integrable on [tg, o).
In 1995, Kusano and Yoshida [9] generalized Theorems A and B as follows:
Theorem 1. If q € Lt[ty,00), and

oo -1 a—1
lim sup to‘_l/ q(s)ds < (ai), (12)
t—o00 t a®
then equation (11) is nonoscillatory.
Theorem J. If q € L'[tg, ), and
e e] _ 1 a—1
lim inf to‘fl/ q(s)ds > ((17), (13)
t—o0 t a“

then equation (11) is oscillatory.
In 2004, Yang [17] extended Theorems I and J as follows:
Theorem K. If q € L[ty,00), and for large t > t,

pa—1 /too q(s)ds < (O‘_i, (14)

aa

then equation (11) is nonoscillatory.
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Theorem L. If q € L'[tg, ), and for large t > to,

ta_l/ q(s)ds > ay, (15)
¢

where g > %, then equation (11) is oscillatory.

In 2007, Kong [8] extended the results of Wong [15], namely Theorems E and
F, for the linear differential equation (1) to the half-linear differential equation
(11) as follows:
Theorem M. Let A > 1 and £* = £*(a). Assume there exists to € (0,00) such

that for each n € Ng = {0,1,2,...}, q(t) satisfies

1

k"+1to a—1 6*
</Mt0 Q(S)d5> < m, (16)

then equation (11) is nonoscillatory.
Theorem N. Let A > 1 and &* = £*(a). Assume there exists ty € (0,00) and
& > &* such that for each n € Ng ={0,1,2,...}, q(t) satisfies

An+1t0 ﬁ é-

then equation (11) is oscillatory.
In this paper, by using the same method in Wong [15], we extend Theorems
G, H and N to the following nonlinear delay differential equation

(I OF 2y ®) +a@ @) 2y @) =0, 1210, (8)

where 3 > 1, a > 1, ¢(t) > 0 and locally integrable on [tg, c0), 7(¢) is continuous
function satisfying 0 < 7(t) < ¢ and lim—, o 7(t) = 0.

Note that the equation (18) with 7(t) = t is referred to as a super-half-linear
equation, a sub-half-linear equation and an Emden-Fowler type equation for
0> a, B < aand 0 # «a, respectively. We refer the readers to the introductory
books by Agarwal et al. [2] and by Dosly and Rehdk [4] for the equation (18)
with 7(t) = t.

To present our results, we need the following lemma which is given by Erbe
[5].

Lemma P. Assume that 7 € C ([tg,00),RT), 0 < 7(t) < t for t > ty and
limg oo 7(t) = 00. Let y € C? ([tg,o0), RT) be such that y"(t) <0 for t > T >
to. Then for each constant k € (0,1), there is a Ty, > T such that

7 (1)
t

for t>T. (19)
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2 Main Results

First, we obtain two theorems which concern the oscillatory behaviour of equa-
tion (18) with 8 = . Next, motivated by the ideas of Agarwal and Grace [1]
and Cakmak [3], we present two other results for 5 # a.

Theorem 1 Suppose that for all sufficiently large t, q(t) satisfies

[ ao () ez 2 (20

for some fized constant c; > %, then all solutions of equation (18) with

B = « are oscillatory.

Proof. Assume on the contrary that equation (18) with 8 = « has a nontrivial
nonoscillatory solution y(t), we can assume without loss of generality that y(t)

0 for ¢ > to. Since lim;_,o 7(t) = o0, there exists t1 > to such that y(r ( ) >

for t > t;. By equation (18) with 8 = a, since q(t) > 0, |y/(t)|* ¢/ (¢ )
nonincreasing on [t1,00), so is y’(t). This implies that y ( ) > 0 and y"(t) <

PO 0!

for t > t;. Define w(t) = ATORTOR then w(t) satisfies the equation

w0+ o= D] 4 a0 (L) o (1)

on [t1,00). Thus, by Lemma P, for each constant k € (0,1), there exists to,
depending on k, such that for t >t > t1,

y(r () _,7(@)
OB (22)

Substituting (22) into (21), we find

W (1) + (o — 1) (D] =T + (k%) a(t) <0, (23)

since ¢(t) > 0. It follows from the result of Li and Yeh [10, Theorem 3.2] that
(23) implies the half-linear differential equation

t

(W) + (kﬂ) dO O =0 (2

is nonoscillatory for every k, 0 < k < 1. Note that u = k%=1 € (0,1) for every

0 < k <1 and a > 1. Choose p sufficiently close to 1 so that uay > %

which is possible since a; > %, for example, choose y1 = 5+ (a;ai)al <l

Condition (20) implies

’ /f(ﬁ)mq(smsz;ﬂ and oy > @D )

S a®
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which in turn implies the oscillation criteria (15) given by Yang [17] that equa-
tion (24) is oscillatory. This is a contradiction, hence equation (18) with 8 = «
is oscillatory. m

Using the same argument as in the proof of Theorem 1, we can also prove
the following result.

Theorem 2 Let A > 1 and £ = £*(a). Assume there exists to € (0,00) and
&> & such that for each n € Ng = {0,1,2,...}, q(t) satisfies

</A::1to q(s) <@>al dg) o > m (26)

Then all solutions of equation (18) with B = « are oscillatory.

Proof. We follow the proof of Theorem 1 and conclude that the existence of a
nonoscillatory solution of (18) with 8 = « lead to the conclusion that the half-
linear differential equation (24) is nonoscillatory for every k, 0 < k < 1. For
every 0 < k < 1 and a > 1, we can again choose y = k! € (0, 1) sufficiently
close to 1 so that p& > £*. Now the coefficient function of equation (24) satisfies

(Lo ) e @

where & = u€ > &*, so we can apply Theorem N given by Kong [8] to equation
(24) and conclude that it is oscillatory for such p, 0 < p < 1, but u€ > £*. This
contradicts the fact that equation (24) is nonoscillatory for all k, 0 < k < 1.
The proof is complete. m

Remark 3 When oo = 2, Theorems 1 and 2 reduce to Theorems G and H,
respectively.

Remark 4 If the delayed argument is absent, i.e. 7(t) = t, then Theorems 1
and 2 reduce to Theorems L and N, respectively. Furthermore, Theorem 1 is an
extension of Theorem J.

Remark 5 Let o = 2 and 7(t) = t. In this case, Theorem 1 is an extension
of Theorem B. Moreover, Theorem 2 (or Theorem 2 with A = 2) reduces to
Theorem F (or Theorem D).

Theorem 6 Suppose that for all sufficiently large t, q(t) satisfies

e[ ats <Q)Bd > (25)

(ail)a—l
for some fized constant oy > 54—

assertions are true:
(i) all unbounded solutions of equation (18) with 8 > « are oscillatory.
(ii) all bounded solutions of equation (18) with B < « are oscillatory.

and any constant ¢ > 0, then the following
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Proof. Assume on the contrary that equation (18) with 3 # « has a nontrivial
nonoscillatory solution y(t), we can assume without loss of generality that y(t) >
0 for ¢ > tp. Since lim;_,o 7(t) = 0o, there exists ¢; > to such that y(7(¢)) > 0
for t > t;. By equation (18) with 3 # a, since q(t) > 0, |y'(t)|* > ¢/(t) is
nonincreasing on [t1,00), so is y/(¢). This implies that ¢/(¢) > 0 and y”(t) <0

O B

for t > t1. Define w(t) = NOIGETOR then w(t) satisfies the equation

y((1))
y(t)

on [t1,00). Next, we consider the following two cases:

(i) If y(¢) is an unbounded nonoscillatory solution of equation (18) with
B > « for t > tg, then there exist a constant k1 > 0 and ¢ty > t; > tg such that
y(t) > ky for t > to. Therefore,

a A1
w'<t>+<a—1>|w<t>|ﬁ+q<t>( ) WO =0 (29)

(W)’ > kP~ = ¢y fort > 1y, (30)

where ¢; is a constant. Using (30) in the equation (29), and proceeding as in
the proof of Theorem 1, we arrive at the desired contradiction.

(ii) If y(¢) is a bounded nonoscillatory solution of equation (18) with 3 < «
for t > to, then there exist a constant ks > 0 and to > t; > ty such that
y(t) < ko for t > to. Therefore,

W) > kP = ey fort > 1, (31)

where ¢y is a constant. The rest of the proof is similar to that of previous case
and, hence omitted. m

Combining some ingredients of the proofs of Theorems 2 and 6, we give the
following result for equation (18) with 8 # «, the proof of which is similar to
that of Theorem 6, and hence omitted.

Theorem 7 Let A > 1 and & = £*(«). Assume there exists tg € (0,00) and
& > £ such that for each n € Ny = {0,1,2,...} and any constant ¢ > 0, ¢(t)

satisfies
Al T(S) B—1 o1 ¢
<c //\nt0 q(s) <T> ds > 7()\ ity (32)

Then the following assertions are true:
(i) all unbounded solutions of equation (18) with 8 > « are oscillatory.
(i) all bounded solutions of equation (18) with B < a are oscillatory.

Finally, we generalize above results for a class of more general nonlinear
delay differential equations as follows:
Let «, 3, ¢(t), and 7(¢) be as above, and consider

(19 OF 2y @) + ft o) =0, 1>, (33)
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where the function f satisfies
sf(t,s) > q(t)|s|” for t >ty and s € R. (34)

The proof of the following results are exactly as in that of above theorems and
hence omitted.

Theorem 8 In addition to the conditions of Theorem 1 (or Theorem 2), if (34)
with B = « holds, then all solutions of equation (33) are oscillatory.

Theorem 9 In addition to the conditions of Theorem 6 (or Theorem 7), if (34)
with B > « holds, then all unbounded solutions of equation (33) are oscillatory.

Theorem 10 In addition to the conditions of Theorem 6 (or Theorem 7), if
(84) with B < « holds, then all bounded solutions of equation (33) are oscilla-
tory.

Remark 11 For another oscillation criteria contain for equation (18) with 5 >
a and (33) with f(t,y(7(t))) = F(y(r(t))) under different sufficient conditions,
the reader is referred to [13].

Remark 12 In case the delay is bounded, i.e., 0 <t —7(t) < M, then @ in
conditions (20), (26), (28) and (32) can be replaced by 1. In other words, Hille’s
oscillation criterion (3) is also valid oscillation criteria for equations (18) and

(83) with § = o = 2 and bounded delay; see [11, 14, 15].
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