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1 Introduction

Some time ago one of the authors proposed a method for treating the boundary integral
equation of the first kind arising when you impose the Dirichlet condition for Laplace equation
to a simple layer potential [2]. This method hinges on the theory of reducible operators and
on the theory of differential forms, it does not use the theory of pseudodifferential operators
and could be considered as an extension to higher dimensions of Muskhelishvili’s method
(see [3]). Later, this approach was extended to different BVPs for several partial differential
equations and systems in simply and multiple connected domains (see [5] and the references
therein).

Recently we have showed how to use this approach to solve the Dirichlet problem for
the n-dimensional Helmholtz equation by means of a simple layer potential [6]. The aim of
the present paper is to continue that investigation, showing how our method could be used
to solve the Neumann problem for the same equation by means of a double layer potential.
To this end, we make use of some fundamental results given by Colton and Kress in their
celebrated monograph [7], in particular on the description of the traces on the boundary of
eigensolutions of Dirichlet or Neumann problems. Colton and Kress proved their results in
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spaces of continuous functions on a C2 boundary. As already remarked in [6], the same results
can be established under more general assumptions by nowadays standard arguments in
potential theory (see, e.g., [10]). In particular, they hold in Lp spaces on a Lyapunov boundary.
When we consider their results, we shall always refer to them under these more general
hypotheses.

Differently from [7], here we consider the Neumann problem with data in Lp(Σ) and we
obtain that the solution can be represented as a double layer potential with density in the
Sobolev space W1,p(Σ).

We shall consider domains in Rn, with n ≥ 3. In principle our method could be applied
also for n = 2 with some appropriate modifications, as to change fundamental solution and
radiation condition (see [7, pp. 106–107]).

The paper is organized as follows. After summarizing notations and definitions in Sec-
tion 2, we collect some preliminary results in Section 3. We mention that we prove a regularity
result for the eigensolutions of a certain integral equation (see Proposition 3.2) without using
the usual regularity properties of the double layer potential (see [8] for recent results in this
direction and for an extensive bibliography). Our approach seems to be simpler and it is a
consequence of some of our previous results on Laplace equation.

In the short Section 4 we recall the main result we have obtained in [6] for the Dirichlet
problem. Section 5 is devoted to the main result of the present paper: we prove that the
Neumann problem with data in Lp(Σ) (1 < p < ∞) can be represented by a double layer
potential with density in W1,p(Σ) if and only if the data satisfies some necessary orthogonality
conditions.

2 Notations and definitions

From now on Ω will be a bounded domain (open connected set) of Rn (n ≥ 3) whose bound-
ary Σ is a Lyapunov hypersurface (i.e. Σ has a uniformly Hölder continuous normal field
of some exponent λ ∈ (0, 1]), and such that Rn \ Ω is connected; ν(x) = (ν1(x), . . . , νn(x))
denotes the outwards unit normal vector at the point x = (x1, . . . , xn) ∈ Σ. The Euclidean
norm for elements of Rn is denoted by | · |.

Now fix 1 < p < ∞. By Lp(Σ) we denote the space of p-integrable complex-valued
functions defined on Σ. By Lp

h(Σ) we mean the space of the differential forms of degree h ≥ 1
whose components belong to Lp(Σ).

The Sobolev space W1,p(Σ) can be defined as the space of functions in Lp(Σ) such that
their weak differential belongs to Lp

1(Σ).
If u is an h-form in Ω, the symbol du denotes the differential of u, while ∗u denotes the

dual Hodge form. Finally, we write ∗
Σ

w = w0 if w is an (n− 1)-form on Σ and w = w0dσ.

Besides the theory of differential forms, the method we use hinges on the theory of re-
ducible operators. Here we recall that, given two Banach spaces E and F, a continuous linear
operator S : E → F can be reduced on the left if there exists a continuous linear operator
S′ : F → E such that S′S = I + T, I being the identity operator on E and T a compact operator
on E. An operator S reducible on the right can be defined analogously. If S can be reduced (on
the left or right), then its range is closed and, as a consequence the equation Sα = β admits a
solution if and only if 〈γ, β〉 = 0, for any γ ∈ F∗ such that S∗γ = 0, where S∗ is the adjoint
of S. For more details we refer the readers, e.g., to [9] or [11].
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We consider the n-dimensional Helmholtz equation

∆u + k2u = 0 (2.1)

where k ∈ C \ {0}, Im(k) ≥ 0, u : Ω → C, and ∆ is the Laplace operator. The fundamental
solution of (2.1) is given by

Φ(x) =
i
4

(
k

2π|x|

)(n−2)/2

H(1)
(n−2)/2(k|x|)

where H(1)
µ is the Hankel function of the first kind of order µ (see, e.g., [1, p. 42]). In what

follows it will be useful to consider the auxiliary function

h(x) = Φ(x)− s(x) (x ∈ Rn \ {0}) ,

where s is the fundamental solution of −∆, i.e. for n ≥ 3 and x ∈ Rn \ {0},

s(x) =
1

(n− 2)ωn
|x|2−n

(
ωn =

2πn/2

Γ(n/2)

)
.

We observe that (see [12, Lemma A.5, p. 571])

|∇h(x)| ≤ c|x|3−n, ∀ x ∈ Rn \ {0}. (2.2)

Hence, from (2.2), and recalling that |∇s(x)| ≤ c1|x|1−n, immediately we get

|∇Φ(x)| ≤ c2|x|1−n . (2.3)

Moreover, ∣∣∣∣∂2h(x)
∂xj∂xl

∣∣∣∣ ≤ c|x|2−n, ∀ x ∈ Rn \ {0}, j, l = 1, . . . , n. (2.4)

As we shall see, we are interested to solve the Neumann problem related to the Helmholtz
equation (2.1) in the class of potentials defined as follows.

Definition 2.1. We say that a function w belongs to the space Dp if and only if there exists
ψ ∈W1,p(Σ) such that w can be represented by means of a double layer potential with density
ψ, i.e.

w(x) =
∫

Σ
ψ(y)

∂Φ
∂νy

(x− y) dσy, x ∈ Ω .

We also recall the following class of functions used in [6].

Definition 2.2. We say that a function u belongs to the space S p if and only if there exists
ϕ ∈ Lp(Σ) such that u can be represented by means of a simple layer potential with density
ϕ, i.e.

u(x) =
∫

Σ
ϕ(y)Φ(x− y) dσy, x ∈ Ω . (2.5)

We shall distinguish by indices + and − the nontangential limit obtained by approaching
the boundary Σ from Rn \Ω and Ω, respectively (see, e.g. [10, p. 293]).

We remark that by 〈 f , g〉 we denote the bilinear form∫
Σ

f g dσ .
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3 Preliminary results

Let us introduce the integral operators:

K : Lp(Σ)→ Lp(Σ) , Kϕ(x) = 2
∫

Σ
ϕ(y)

∂Φ
∂νy

(x− y) dσy

and its adjoint

K∗ : Lq(Σ)→ Lq(Σ) , K∗ ψ(x) = 2
∫

Σ
ψ(y)

∂Φ
∂νx

(x− y) dσy .

where 1 < p < ∞ and 1
p +

1
q = 1. K and K∗ are adjoint operators with respect to the duality

〈ψ, Kϕ〉 = 〈K∗ψ, ϕ〉.

Moreover, K and K∗ are compact operators because of (2.3).
Here, we are interested in the kernels of the operators I ± K and I ± K∗, where I is the

identity operator on the relevant Lebesgue space. To this end, let us denote by U0 the space of
solutions of 

u ∈ C1,λ(Ω) ∩ C2(Ω),

∆u + k2u = 0 in Ω,
∂u
∂ν

= 0 on Σ

and by V0 the space of solutions of
u ∈ C1,λ(Ω) ∩ C2(Ω),

∆u + k2u = 0 in Ω,

u = 0 on Σ .

Note that U0 = {0} (resp. V0 = {0}) whenever k2 is not an interior Neumann eigenvalue
(resp. an interior Dirichlet eigenvalue).

It is known that (see [7, Theorem 3.17])

N (I + K) =
{

u|Σ : u ∈ U0
}

(3.1)

and that (see [7, Theorem 3.22])

N (I − K∗) =
{

∂v
∂ν

∣∣∣
Σ

: v ∈ V0

}
. (3.2)

Let dim N (I +K) = mN and dim N (I−K) = mD. Note that, mN = 0 if k2 is not an interior
Neumann eigenvalue, while mD = 0 whenever k2 is not an interior Dirichlet eigenvalue.

Moreover

dim N (I + K) = dim N (I + K∗) and dim N (I − K) = dim N (I − K∗) .

We have also the following lemma.

Lemma 3.1. N (I ± K) ⊥ N (I ∓ K∗).
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Proof. If α ∈ N (I ± K) and β ∈ N (I ∓ K∗), then

〈α, β〉 = 〈∓Kα, β〉 = ∓〈α, K∗β〉 = −〈α, β〉 ,

and hence 〈α, β〉 = 0.

The next proposition shows that the functions in N (I − K) belong to the Sobolev space
W1,p(Σ). As said in the introduction, this result could be deduced by regularizing properties
of the double layer potential, but here we use a different approach which seems to be simpler.

Proposition 3.2. Let ζ ∈ Lp(Σ) be a solution of the equation ζ−Kζ = 0. Then ζ belongs to W1,p(Σ).

Proof. Since ζ ∈ N (I − K), the potential

v(x) =
∫

Σ
ζ(y)

∂Φ
∂νy

(x− y) dσy

satisfies the condition v− = 0 on Σ.
We can write the equation ζ − Kζ = 0 as

−1
2

ζ(x) +
∫

Σ
ζ(y)

∂s
∂νy

(x− y) dσy = T(x),

where
T(x) = −

∫
Σ

ζ(y)
∂h
∂νy

(x− y) dσy .

Thanks to (2.2) and (2.4), the function T belongs to W1,p(Σ). Therefore the harmonic
function

a(x) =
∫

Σ
ζ(y)

∂s
∂νy

(x− y) dσy

satisfies the boundary condition a = T on Σ. As proved in [2], the function a can be repre-
sented as a simple layer potential with density A ∈ Lp(Σ):

a(x) =
∫

Σ
A(y) s(x− y) dσy .

This implies that there exists the normal derivative ∂a/∂ν almost everywhere on Σ and it
belongs to Lp(Σ) (see [2, pp. 182–183]). It follows that the function ζ satisfies the condition

∂

∂νx

∫
Σ

ζ(y)
∂s
∂νy

(x− y) dσy =
∂a
∂ν

(x)

on Σ.
Thanks to [4, p.29] we can say that there exists a solution ζ0 ∈ W1,p(Σ) of this equation,

since the right-hand side has zero mean value on Σ. Therefore

∂

∂νx

∫
Σ
(ζ(y)− ζ0(y))

∂s
∂νy

(x− y) dσy = 0

on Σ and the potential ∫
Σ
(ζ(y)− ζ0(y))

∂s
∂νy

(x− y) dσy

has to be constant in Ω. It follows ζ = ζ0 + c and this completes the proof.
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In the following theorem we collect some useful results contained in [7, Theorems 3.18
and 3.23].

Theorem 3.3.

(i) Let {λ1, . . . , λmN} be a basis of N (I + K∗) and define

uj(x) =
∫

Σ
λj(y)Φ(x− y) dσy x ∈ Rn \ Σ , j = 1, . . . , mN .

Then

λj = −
∂uj

∂ν+
on Σ , j = 1, . . . , mN ,

and the functions
ρj = −uj,+ on Σ , j = 1, . . . , mN

form a basis of N (I + K).

Moreover, the determinant of the matrix (〈ρj, λl〉)j,l=1,...,mN is nonzero.

(ii) Let {ζ1, . . . , ζmD} be a basis of N (I − K) and define

vj(x) =
∫

Σ
ζ j(y)

∂Φ
∂νy

(x− y) dσy x ∈ Rn \ Σ , j = 1, . . . , mD .

Then
ζ j = vj,+ on Σ , j = 1, . . . , mD ,

and the functions

µj =
∂vj

∂ν+
on Σ , j = 1, . . . , mD (3.3)

form a basis of N (I − K∗).

Moreover, the determinant of the matrix (〈µj, ζl〉)j,l=1,...,mD is nonzero.

Remark 3.4. Thanks to the Lyapunov property of the double layer potential (see [7, Theo-
rem 2.21]), (3.3) is equivalent to

µj =
∂vj

∂ν−
on Σ , j = 1, . . . , mD . (3.4)

4 The Dirichlet problem

In this section we describe the main lines of the method applied in [6] to the Dirichlet problem
u ∈ Sp,

∆u + k2u = 0 in Ω,

u = f on Σ , f ∈W1,p(Σ) .

(4.1)

First, we imposed the boundary condition to (2.5), obtaining∫
Σ

ϕ(y)Φ(x− y) dσy = f (x), x ∈ Σ . (4.2)
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Then, taking the exterior differential d of both sides of the integral equation of the first kind
(4.2), we get the singular integral equation

Sϕ(x) = d f (x), a.e. x ∈ Σ , (4.3)

where
Sϕ(x) =

∫
Σ

ϕ(y)dx[Φ(x− y)]dσy .

The singular integral operator S : Lp(Σ) → Lp
1(Σ) can be reduced on the left by the singular

integral operator J
′

: Lp
1(Σ) −→ Lp(Σ) defined as

J′ψ(z) = ∗
Σ

∫
Σ

ψ(x) ∧ dz[sn−2(z, x)], z ∈ Σ,

with
sn−2(x, y) = ∑

j1<...<jn−2

s(x− y)dxj1 . . . dxjn−2 dyj1 . . . dyjn−2

being the Hodge double (n− 2)-form (see [6, Theorem 2]).
Therefore, the range of S is closed and equation (4.3) has a solution ϕ ∈ Lp(Σ) if and only

if ∫
Σ

γ ∧ d f = 0

for every γ ∈ W1,q
n−2(Σ) (q = p/(p − 1))(∗) such that dγ = ∂v

∂ν dσ, for all v ∈ V0 (see [6,
Theorem 4]).

Using the above results, we proved the representability theorem for the Dirichlet problem
via simple layer potentials, rewritten here in a new form.

Theorem 4.1. Let f ∈ W1,p(Σ). There exists a solution of (4.1) if and only if f satisfies the compati-
bility conditions ∫

Σ
f µj dσ = 0 for every j = 1, . . . , mD . (4.4)

Proof. From [6, Theorem 5] it follows that there exists a solution of (4.1) if and only if f satisfies
the compatibility conditions ∫

Σ
f

∂v
∂ν

dσ = 0 for all v ∈ V0 . (4.5)

Conditions (4.5) and (4.4) are equivalent because of (3.2), Theorem 3.3-(ii), and (3.4).

5 The Neumann problem

In this section we consider the Neumann problem
w ∈ Dp,

∆w + k2w = 0 in Ω,
∂w
∂ν

= g on Σ,

(5.1)

(∗)By W1,q
n−2(Σ) we denote the space of differential forms of degree n− 2 whose coefficients belong to W1,q(Σ).
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where g ∈ Lp(Σ) satisfies ∫
Σ

gu dσ = 0, ∀ u ∈ U0 . (5.2)

Observe that conditions (5.2) are necessary for the solvability of the problem (5.1) because of
Green’s formulas.

Moreover, conditions (5.2) can be rewritten as∫
Σ

gρj dσ = 0, j = 1, . . . , mN . (5.3)

We begin by stating some preliminary results.

Proposition 5.1. Consider u ∈ S p with density ϕ ∈ Lp(Σ) and let W0 ∈ Dp with density u:

W0(x) =
∫

Σ
u(y)

∂Φ
∂νy

(x− y) dσy, x ∈ Ω .

Then
∂W0

∂ν
(x) = −1

4
ϕ(x) +

1
4

K∗ 2ϕ(x) . (5.4)

for almost every x ∈ Σ.

Proof. First observe that u solves equation (2.1), and hence (see [7, Theorem 3.1])

u(x) =
∫

Σ

{
Φ(x− y)

∂u
∂ν

(y)− u(y)
∂Φ
∂νy

(x− y)
}

dσy, x ∈ Ω .

Moreover, for u the following jump relation holds (see [7, Theorem 2.19])

∂u
∂ν−

(x) = lim
y→x

y∈ν−x

∂u
∂ν

(y) =
1
2

ϕ(x) +
∫

Σ
ϕ(y)

∂Φ
∂νx

(x− y) dσy,

almost everywhere on Σ. We have also

∂W0

∂ν
(x) =

∂

∂ν

{
−u(x) +

∫
Σ

Φ(x− y)
∂u
∂ν

(y)dσy

}
= −∂u

∂ν
(x) +

∂

∂νx

∫
Σ

Φ(x− y)
∂u
∂ν

(y)dσy

=

(
1
2
− 1
)

∂u
∂ν

(x) +
∫

Σ

∂u
∂ν

(y)
∂Φ
∂νx

(x− y) dσy

= −1
2

{
1
2

ϕ(x) +
∫

Σ
ϕ(y)

∂Φ
∂νx

(x− y) dσy

}
+
∫

Σ

{
1
2

ϕ(y)+
∫

Σ
ϕ(z)

∂Φ
∂νy

(y− z) dσz

}
∂Φ
∂νx

(x− y) dσy

= −1
4

ϕ(x) +
∫

Σ
ϕ(z) dσz

∫
Σ

∂Φ
∂νy

(y− z)
∂Φ
∂νx

(x− y) dσy.

Hence formula (5.4) is proved.

Lemma 5.2. The Fredholm equation

− ϕ + K∗ 2ϕ = 4g , (5.5)
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where g ∈ Lp(Σ), admits a solution ϕ ∈ Lp(Σ) if and only if conditions∫
Σ

gρj dσ = 0, j = 1, . . . , mN (5.6)

and ∫
Σ

gζi dσ = 0, i = 1, . . . , mD (5.7)

are satisfied.

Proof. Assume that (5.6) and (5.7) are satisfied and rewrite equation (5.5) as

(I + K∗)(−I + K∗)ϕ = 4g.

Observe that the equation (I + K∗)γ = 4g admits a solution because of (5.6). Denote by γ0

such a solution and consider

(−I + K∗)ϕ = γ0. (5.8)

The last equation is solvable if and only if 〈γ0, ζi〉 = 0 for every ζi ∈ N (I − K), i = 1, . . . , mD.
We have

〈γ0, ζi〉 = 〈γ0, Kζi〉 = 〈K∗γ0, ζi〉 = −〈γ0, ζi〉+ 〈4g, ζi〉 ,

and then, thanks to (5.7),

〈γ0, ζi〉 = 〈2g, ζi〉 = 0, i = 1, . . . , mD.

This shows that there exists a solution ϕ of (5.8). Therefore ϕ satisfies (5.5).
Conversely, if ϕ is such that (5.5) holds, we have

(−I + K∗)(I + K∗)ϕ = 4g.

In particular, 4g ∈ R(I − K∗) = N (I − K)⊥, and then conditions (5.7) are satisfied. On the
other hand, (I + K∗)(−I + K∗)ϕ = 4g, hence 4g ∈ R(I + K∗) = N (I + K)⊥, and then all
conditions in (5.6) hold.

Lemma 5.3. Given ψ ∈W1,p(Σ) there exist ϕ ∈ Lp(Σ) and c1, . . . , cmD ∈ C such that

ψ(x) =
∫

Σ
ϕ(y)Φ(x− y) dσy +

mD

∑
i=1

ciζi(x), x ∈ Σ . (5.9)

The vector (c1, . . . , cmD) is the unique solution of the system

mD

∑
i=1

ci〈ζi, µj〉 = 〈ψ, µj〉 , j = 1, . . . , mD . (5.10)

Proof. Let ψ ∈ W1,p(Σ). In view of Proposition 3.2 the function ψ − ∑mD
i=1 ciζi belongs to

W1,p(Σ) for any c1, . . . , cmD . Thanks to Theorem 4.1, there exists ϕ ∈ Lp(Σ) satisfying (5.9) if
and only if ∫

Σ

(
ψ−

mD

∑
i=1

ciζi

)
µjdσ = 0, j = 1, . . . , mD ,

that is, (c1, . . . , cmD) is solution of system (5.10). Note that the constants c1, . . . , cmD are
uniquely determined since the determinant of the matrix (〈µj, ζl〉)j,l=1,...,mD is nonzero (see
Theorem 3.3).



10 A. Cialdea, V. Leonessa and A. Malaspina

Theorem 5.4. There exists a solution of (5.1) if and only if g satisfies (5.2).

Proof. Assume that g satisfies (5.2). Let (c1, . . . , cmD) be the solution of the system

mD

∑
i=1

ci

∫
Σ

µiζ jdσ =
∫

Σ
gζ jdσ , j = 1, . . . , mD (5.11)

and consider the potential

w(x) =
∫

Σ

(∫
Σ

ϕ(z)Φ(y− z)dσz

)
∂Φ
∂νy

(x− y)dσy +
mD

∑
i=1

ci

∫
Σ

ζi(y)
∂Φ
∂νy

(x− y) dσy , x ∈ Ω ,

where ϕ ∈ Lp(Σ) has to be determined. By imposing the boundary condition we obtain

∂

∂νx

∫
Σ

(∫
Σ

ϕ(z)Φ(y− z)dσz

)
∂Φ
∂νy

(x− y)dσy +
mD

∑
i=1

ci
∂

∂νx

∫
Σ

ζi(y)
∂Φ
∂νy

(x− y) dσy

= −1
4

ϕ(x) +
1
4

K∗ 2ϕ(x) +
mD

∑
i=1

ciµi(x) = g(x) , x ∈ Σ ,

because of (5.4), (3.3), and (3.4). Then w satisfies the boundary conditions if and only if

−ϕ + K∗ 2ϕ = 4

(
g−

mD

∑
i=1

ciµi

)
on Σ .

By virtue of Lemma 5.2, there exists a solution ϕ ∈ Lp(Σ) of this equation if and only if∫
Σ

(
g−

mD

∑
i=1

ciµi

)
ρjdσ = 0, j = 1, . . . , mN (5.12)

and ∫
Σ

(
g−

mD

∑
i=1

ciµi

)
ζ jdσ = 0, j = 1, . . . , mD . (5.13)

Conditions (5.12) are satisfied because∫
Σ

(
g−

mD

∑
i=1

ciµi

)
ρjdσ = −

mD

∑
i=1

ci

∫
Σ

µiρjdσ = 0

thanks to (5.3) and Lemma 3.1. On the other hand, conditions (5.13) hold in view of (5.11).
Conversely, let w ∈ Dp be a solution of (5.1) with density ψ ∈ W1,p(Σ). From Lemma 5.3,

ψ can be written as in (5.9). Therefore,

−ϕ + K∗ 2ϕ + 4
mD

∑
i=1

ciµi = 4g on Σ .

Now we consider u ∈ U0. From (3.1), u|Σ ∈ N (I + K) and, from Lemma 3.1,
∫

Σ µiu dσ = 0.
On the other hand, −ϕ + K∗ 2ϕ ∈ R(I + K∗) = N (I + K)⊥, and hence we have that∫

Σ(−ϕ + K∗ 2ϕ)u dσ = 0.
Accordingly, ∫

Σ
4gu dσ =

∫
Σ
(−ϕ + K∗ 2ϕ)u dσ + 4

mD

∑
i=1

ci

∫
Σ

µiu dσ = 0

and condition (5.2) is fulfilled.
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