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Abstract

Our aim is to investigate a quadrature of form:

1
/f Jdx = c1 f(z1)+caf(w2)+esf(ws)teaf(xa)+esf(xs)+R(f)
0

where f : [0,1] — R is integrable, R(f) is the remainder-term and
the distinct knots x; an supposed to be symmetric distributed in
[0,1]. Under the additional hypothesis that all z; an of rational type

(see(4)), we are interested to find maximum degree of exactness of

such quadrature.
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1 Introduction

Let [[,,, be the linear space of all real polynomials of degree < m and denote

e;j(t) =17, j € N. A quadrature of form

2) / fa dx—zckf ) + R()

has degrees (of exactness) m if R(h) = 0 for any polynomial h € [[, . If
R(h) =0 for all h € [],, and moreover R(e,,11) # 0 it is said that (2) has
the exact degree m. It is known that if (2) has degree m, then m < 2n — 1.
Likewise, there exists only one formula (2) having maximum degree 2n — 1.

The aim of this paper is to study the formulas like (2) for n = 5 having
some practical properties. Let us note that in this case, the optimal formula

having maximum degree m =9 is

1 1 10 1
— ot [5x2 ) 1<k <4 ==
TRT5% 5% 7= ER TS

It is clear that not all knots x; are rational numbers.

(3) / f(a dx— ckf<xk>+r<f>

Definition 1. Formula (1) is said to be of “practical-type”, if

i) the knots x; are of form

(4) T =TL,T =T, 3=, 8 =1—ro,x5=1-—1

2

where r1,ry distinct rational numbers from [0, %)
it) all coefficients cy, ca, 3,4, C5 are rational numbers with ¢; = c¢s5 and

Cy = (4.
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iii) (1) is of order p, with p > 1. Therefore, in case n =5 a practical-
type formula has the form

(5) /f(x)dx = A(f(r)+f(1=r1))+B(f(r2)+ f(1=r2))+C-f (%) +R(f)

A, B being rational numbers, C = 1 — 2(A + B), and when ri,7m9 are

distinct rational numbers from [0, %) :

Lemma 1. Let s be a natural number and suppose in (5) we have R(h) =0

for all h € T],,. Then R(g) =0 for every g from [],,. ;.

2541
Proof. Let H(x) = (x—%) . According to symmetry

le(x)dx =0 and also R(H) = 0. Observe that eg,1(z) = 2% = H(z)+
E)l—hl(yc) with hy € ],,. Therefore R(essy1) = 0 and supposing g € [[,, 4
with g(z) = apz®™ + ..., we have R(g) = ag - R(eass1) + R(ha), hy € Ry,
that is R(g) = 0.

Lemma 2. If in (5) we have R(h) = 0 for every polynomial of degree < 4,

then )
10r; — 10 1
(6) A= e
60(]. - 27”1) (7‘1 - 7”2)(]. — T — 7“2)
B_ 1075 —10r + 1
60(1 — 27“2)2(7’2 — 7"1)(1 — Ty — T'Q)
O - 8 +40(r? +13) — 40(ry — 7o) + 2407, 79(1 — 11 — 7o + 7179)

15(1 — 2r)%(1 — 21y)?

Proof. We use standard method, namely by considering polynomials

w(z)

L j€{1,2,3,4,5}, w(z) =[]z — x)

= =) (@) 11
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For instance, taking into account that
/ 1 2 . 1
w'(z) = —1(1 —2r1)%(ry — rg), with § = 5

are found
1
/ll d&? — All .’13‘1)
0

and we conclude with

1
2
1
A= tft — (1 —2r)R)[t* — (1 — 2ry)*h?]dt =
é

B 10r5 — 107y + 1
60(1 — 2r1)2(ry — 7o) (1 — 71 — 73)

In a similar way are found coefficients B and C. Taking into account

that (5) is symmetric, we give:

Corollary 1. Quadrature formula (5) has order, m > 5, if and only if the
coefficients are given by (6).

Lemma 3. If (5) has order m, m > 6, then ry,ro must be distinct rational

numbers from (0, 1] such that

(7) 560rirs + 56(r; +r3) — 56(r1 + r2) 4+ 560rro(1 — 11 —r2) + 5 = 0.

Proof. It is sufficient to impose condition R(eg) = 0, eg(x) = z°. By
considering [a,b] = [—1, 1], are found R(eg) = % —2Ar% — 2Br§ = 0. Using

Lemma 2, see (6) we obtain condition (7).
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Corollary 2. Suppose that (5) is of practical-type. If ri,r9 are distinct
rational numbers from (0,1] such that equalities (6) and (7) are verified,
then (5) has order m =T7.

Let us remark, that the above proposition implies that

\)

1+ 1o — 21179 > =

7

Corollary 3. The maximum order of m of practical-type quadratus formula

at 5-knots satisfied m < 7.

Proof. Formulas like (7) having order m = 8 does not exist. The reason is
that by assuming m > 8, then according to Lemma 1 we must have m = 9.

But in this case numbers r; and ry are not rational (see (3)).

Lemma 4. Then does not exist pairs of rational numbers (ry,rq) which

satisfy
5601373 + 56(r? 4+ 13) — 56(r, + 1) + 560r,r9(1 — 11 —79) + 5 = 0.
Proof. The case (1 — 2r1)(1 — 2ry) = 0 is impossible. Further, consider

(1 — 2’/‘1)(1 - 27"2) 7é 0

and let 1—-2r, = %7 1—=2ry = %7 p,q,T,Y, € Za q>0,y>0, with (pa Q) =1,
(x,y) = 1. ,
Because (1 — 2ry)? 36 = 7(1 — 2ry)'] we  obtain

7[3 —5(1 — 27’1)2]7
72%(3¢% — 5p*) = 3y (5¢* — Tp?). Tt follows that 22> = 0 (mod 3) or

p? = 0 (mod 3). Therefore x or p is divisible by 3, z = 0 (mod 3), x = 3k
with k € Z. Then after dividing by 3, are finds y?(5¢*>—7p?) = 3-7(3¢*>—5p?),
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which means that 5¢> — 7p? must be divisible by 3. From (z,y) = 1 it is
clear that y is not divisible by 3. Now

5¢2 —p* =6(¢* — p*) — (¢ +p?) = —(¢* +p?) =0 (mod 3)

implies p? + ¢> = 0 (mod 3) which is impossible unless p = ¢ = 0 (mod 3),
which can’t happen because (p,g) = 1.

Theorem 1. The practical quadratures at five knots, having maximal degree

of exactness m =5 are those of form

®) [ flads = A0+ F0L=r)l+ B2+ F=m)+OF (5 ) +R(0)

where R(f) is remainder, r1,75 are distinct rational numbers from (0, 1] and
1075 — 1015 + 1
60(1 - 27"1)2(7’2 - T1)<1 — Ty — 7’2)
10r7 —10r + 1
60(1 - 27“2)2(7”2 - 7“1)(]_ — T — 7"2)
8 -+ 40(7’% + 7"3) — 40(7“1 — 7’2) + 2407’17'2(1 —ry —To+ 7’17"2)
15(1 — 2r1)*(1 — 21y)?

Let us note that in quadrature formula from (8) we have

A:

C:

5601775 + 56(r7 +13) — 56(ry + 19) + 560r179(1 — 1y —79) +5 1
R(eq) = 105 "6

If by [20, 21, .-, 2k; f] is denoted the difference of a function f :[0,1] — R

at a system of distinct points {zo, 21, ..., 2z} C [0, 1], it may be shown that.

Theorem 2. Any partial quadratures at five knots, having mazimal degree

m =5 may be written as

(9) /f(x)dxsz) +% {rl,%,l_rl;f} +3—5(1—27’1)2‘
0

240
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1
: T1,7"2,§,1—7“2,1—7"1;f +R(f)7

where ry,ry are distinct rational numbers from (0, 1]

2 Examples

In the following of R;(f),j € N*, we shall denote the remainders terms in
certain quadratures formulas.
Example 1. The closed formulas like (8) are obtained in case ry = 1,

namely

(10) [ f()dz = Aal(0) + F(1)) + Cof(5) + Balf(r) + F(1 = )] + Ral

14(1—2r)® -6
where 7 € Q,r € (0,1), Ry(es) = (105‘2)6 and
1 1 1 3 2
Ay=-————: By= L Cp=2-— 2
°T6 15(1—-2r)2 T 60r(1—2r)%(1—1r) ° 2 15(1—2r)

> , (10) gives

D=

Example 2. For instance, when (rq,73) = (1;

(1) [ @ = 1)+ F)+

o [f G) i G) bof (%) - Rz(f)]

_ 1
Rales) = 5157
Example 3. In case (ry, ) = (%7

o [rowe= b Q) (-2 G Q)

) are found

N
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07 1
+11—5f (5) + R3(f)

3 The remainder term
In order to investigate the remainder we use same methods as in [1] — [6].

Theorem 3. Let m = %,h: , L1 =T1,Ly = T, X3 = %,m: 1 —ry, x5 =

DNO|—

1—7”1.

IFQt) = [ﬁ —(1—2m)2- Zﬂ [t2 — (1= 2rp)? Zﬂ .

1 1 1
2Q(t> |:__t7T17T27_71_T271_T17_+t;f:| dt

(13)  R(f) = ! : :

|
M"‘\l\)h—l
~

5
Proof. Let w(z) = [[(xz—x;). Because our formula (8) is of interpolatory
j=1
type, it follows that we have

1 1
/ f(x)dz = / La(wy, s, 9, 24, w53 f)da + R(J)
0

0

where R(f) =

w(z)|x, x1, g, 3, T4, T5; flda.

o .

1 1
But [ f(1—z)dz = [ f(x)dx and using the symmetry of knots {1, z2, ..., x5}
0 0
we have

1 1
Ly (7“1,7”27571—7"271—Tl;f|1—x) =Ly (7“1,7”27571—7”2,1—7”1#@)‘
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Further, the equality w(1 — x) = —w(x) gives

1

1
R(f):—/w(x) {1—51777“1,7’27531—7’2,1—7”1;4 dx
0

Therefore the remainder from (8) may be written as R(f) = % w(z)D(f;z)dx

o,

with

1 1
D(f;x) = [%7‘1,7“275;1—7“271—Tl;f]—{l—x;rlﬂ‘zaa,l—?“z,l—ﬁ;f} =

which is the same with (13).

Further for g € C[0, 1] we use the uniform norm ||g|| = mz[xx lg(x)].
r € a,

Corollary 4. Let us denote
1 2
w(z) = (x—r)(x—ry)(x—1411) (x—14719), J(1r1,72) = / <x — —) |w(x)|dx
0

If R(f), is the remainder in (8), then for f € C90,1]

1
(14) R < sl O]
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