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Optimal combined quadrature formulas in
Schmeisser's sense

Dumitru Acu

Abstract

In this paper we study the optimal combined quadrature formulas

in Schmeisser’s sense ([8]).
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1 Combined quadrature formulas

In [1] - [3] we introduced the combined quadrature formulas.

We consider the family of elementary quadrature formulas ([3])

b n—1 mj;

1) / f(z)de = AV £ (5, ) + Ry(f)

a h=0 =0

with

a = Zo; < T < Ty <...< T ; < Tmi4+1,5 = b
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and
Ri(#*)=0,k=0,1,2,...,n— 1

for j = 1,2,...,r. It results that the elementary quadrature formulas (1)
have the algebraical degree of exactness n — 1.

Now, we divide the interval [a, b] by the points
(2) a=1Uu < U < ..<U_3 <U =Db

into the subintervals [d;_1,u;], j = 1,7, having the length d; = u; — u;j_1,

j = 1,r. Having in view the identity

/bf(x)dx = Zi; 7 f(z)dz

u;

and computing the integral [ f(z)dz with the quadrature formula j by the
dj,1

family (1) of the quadrature formulas, 7 = 1,7, we obtain the quadrature

formula

ronol d. \ " . T —a
Tz Z ( = a) Arsf (u“ B ) telt)
with

(4) p(f) = .r bcijaRj <f (““erjglj:;b))

The rule (3) with the remainder given (4) we call it the com-

bined quadrature formula connected to the family of the elementary

formula (1).
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Remark 1. Fvery permutation of the elementary quadrature rules by the

family (1) determines a combined quadrature formula.

Remark 2. Evidently, when the all r the rule form the family (1) coincide
with the same elementary quadrature formula, then the combined quadrature
formulas reduces to the generalized composed quadrature formulas

which was studied in [5].

Remark 3. The combined quadrature formula (3) has the algebraical degree

of exactness n — 1.

Now, we suppose the function f to be from C"[a,b] - the set of all
functions f having on the interval [a,b] continuous derivatives up to the

order n.

Theorem 1. If every influence function ¢;(x), (see [5]), corresponding to
the quadrature formula j, 7 = 1,7, by the family (1) is semidefinite and
sign ¢1(x) = sign ¢o(a) = ... = sign ¢.(x), for any x from [a,b], then
for f € C"[a,b] the remainder of combined quadrature formula (3) has the

form:

6 o) = rl(b_&) /cbj )iz | (e, €€ [a,0

J

Proof. From (4) and the asumation of the theorem we have:

p(f) = ‘T (b_a) /% fm (Ujl—i-d]r) dr =

Jj=1
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beﬂa) /cb] )z F(E)

2 Optimal combined quadrature formulas in

Schmeisser's sense

From Peano’s result we have that if the influence function (Peano’s ker-
nel) is semidefinite (it has constant sign), then the remainder of quadrature

formula with the algebraical degree of exactness n — 1 has the form

(6) R.(f) = Cf"M(§), € €a.b]

(see [4], [5], [6]).

n [8] G. Schmeisser formulated the problem of finding the quadrature
formula for which C has a minimum value.

We observe that in the conditions of the Theorem 1 the remainder of
combinated quadrature formulas (3) is the form (6).

For to find the optimal combined quadrature formula in Schmeisser’s

sense among the quadrature formulas (3) we must determine the parameters
dl, dQ, ceey dr with

b—a ’
=1
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such that the expression:

T d
’C|:Z<b—ja

=1

) [

has a minimum value. We have a problem of conditional extremum. Using

the method of lagrange multipliers we find:

Theorem 2. If are verified the conditions of Theorem 1, then for

we obtain the optimal combined quadrature rule in Schmeisser sense with

T d n+1 b
(®) min_ (bja) [ 163 dx =
sA2 5000y Tj:l

a

<3

3 Particular cases

3.1 Generalized quadrature formulae

From Theorem 2 for the generalized quadrature formulae we find
b—a
r

d1:d2:...:d7~:
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r d. n+1 b

L min [g (bja) ] / 6(x)|dz =
, a
— = [ 16 da,

where ¢(z) are the influence functions corresponding to the quadrature

and

formula which generates the generalized quadrature formula.

3.2 Combined quadrature formula by type Simpson -

Newton

In [1] (see and [3]) we introduced a combined quadrature formula by
type Simpson - Newton.
Such, by applying the Simpson’s formula

/bf(w)dw =5 v (M50 -

(b — a’) (iv)
9330 " (&), & € la,b]

to the interval [d;_1,u;], 7 =1,k, 0 <k <r, and the Newton's formula

/f b_a{f<a)+3f(a+b7)+3f( 2<b;“>)+f<b>]—

(b ) (A
6480 f( (&2), & € (a,b)

to [uj_1,u;], 7 = k+1,n, where f € C*[a,b], we obtain the combined

quadrature formula

(9) /f +Zd +8d’+1f(a+d1+...+dj)+
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j>_|_

. d
Z a+dj+...+dj_1+§

dy, d

r—1

d; + d;
+ > GG p o dy oo dy)t

j=k+1 8
+Z Jf atditotdg+B) 1
1 j—1 3
j=k+1
3d; 2d,
—1—2 —fla+d +.. +d] 1+ = 3 + f()+p5k7Nr—k(f>7

j=k+1

with
1 (1
Jj=1 J k+1

Using the Theorem 2 we find: among the all the combined quadrature

formulas (9) that which is optimal in Schmeisser’s sense is given by:

V2(b —a)
2+ (r — k)V3

_ V2(b—a)
kV2+ (r— k)V3’

di:

i=T1k

i=k+ 1k

with

5

S (b—a)’ o
Z: Tarar e hvae T

@I»—‘

1 k
6 124"
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