
General Mathematics Vol. 12, No. 3 (2004), 3–18

On the rate of approximation for the Bézier

variant of Kantorovich-Balazs operators
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Abstract

In the present paper we study the generalized Balazs-Kantorovich-

Bézier operators L∗n,α(f, x).The special cases of our operators reduce

to some well known operators. Recently Gupta and Ispir [Applied

Mathematics Letter] obtained the rate of convergence for function of

bounded variation for the case when α ≥ 1. We now estimate the

rate of convergence for functions of bounded variation for the other

case when 0 < α < 1.
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3



4 Vijay Gupta and Alexandru Lupaş

1 Introduction

For a real valued function f defined on the interval [0,∞), Balazs [2] intro-

duced the Bernstein type rational functions, which are defined by

Rn(f, x) =
1

(1 + anx)n

n∑

k=0


 n

k


 (anx)kf

(
k

bn

)
,(1)

where an and bn are suitably chosen positive numbers independent of x.

The weighted estimates and uniform convergence for the case an = nβ−1,

bn = nβ, 0 < β ≤ 2/3 were investigated in [3]. Recently Ispir and Atakut

[5] introduced the generalization of the Balazs operators, which are defined

by

Ln(f, x) =
1

φn(anx)

∞∑

k=0

φ(k)
n (0)

k!
(anx)kf

(
k

bn

)
, n ∈ N, x ≥ 0,(2)

where an and bn are suitably chosen positive numbers independent of x

and {φn} is a sequence of functions φn : C → C satisfying the following

conditions:

(i) φn(n = 1, 2, ...); is analytic in a domain D containing the disk

B = {z ∈ C : |z − b| ≤ b};

(ii) φn(0) = 1(n = 1, 2, ...);

(iii) For any x ≥ 0, φn(x) > 0 and φ
(k)
n (0) ≥ 0 for any n = 1, 2, ... and

k = 1, 2, ...;

(iv) For every n = 1, 2, ...

φ(ν)
n (anx)

nνφn(anx)
= 1 + O

(
1

nan

)
, ν = 1, 2, 3, 4
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where an → 0, nan →∞ as n →∞.

The operators defined by (2) are summation type operators, which are

not capable to approximate integrable functions. To approximate integrable

functions on the interval [0,∞), the Kantorovich variant of the generalized

Balazs type operators is defined as

L∗n(f, x) = nan

∞∑

k=0

pn,k(x)

∫

In,k

f(t)dt, n ∈ N, x ≥ 0,(3)

where In,k = [k/nan, (k + 1)/nan], pn,k(x) =
∞∑

k=0

φ(k)
n (0)(anx)k

k!φn(anx)
and x ≥ 0.

Some particular cases of the operators are defined as:

Case 1: If an = 1 and φn(x) = enx, then we obtain the Szász-Kantorovich

operators, which are defined by:

S∗n(f, x) = ne−nx

∞∑

k=0

(nx)k

k!

(k+1)/n∫

k/n

f(t)dt, x ∈ [0,∞).

Case 2: If φn(x) = (1 + x)n, then we obtain the Bernstein-Balazs-

Kantorovich operators, which are defined by:

K∗
n(f, x) = nan

n∑

k=0


 n

k


 (anx)k(1 + anx)−n

(k+1)/nan∫

k/nan

f(t)dt, x ∈ [0,∞).

The second case was studied by Agratini [1], who obtained the rate of

convergence for functions of bounded variation. Very recently Gupta and

Ispir [4] estimated the rate of convergence for the Bézier variant of generali-

zed Balazs-Kantorovitch- Bézier operators for the case when α ≥ 1. Bézier
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basis functions play an important role in Computer Aided Geometric De-

sign. This along with the recent work on some Bézier variants of some well

known operators (see [6]), motivated us to study further on some different

operators. The Bézier variant of the generalized Balazs type operators is

defined as:

L∗n,α(f, x) = nan

∞∑

k=0

Q
(α)
n,k(x)

∫

In,k

f(t)dt, n ∈ N, x ≥ 0,(4)

where

Q
(α)
n,k(x) =

{ ∞∑

j=k

pn,j(x)

}α

−
{ ∞∑

j=k+1

pn,j(x)

}α

, α ≥ 1 or 0 < α < 1.

It may be noted that the operators defined by (4) are linear positive

operators and L∗n,α(1, x) = 1. If α = 1, L∗n,α(f, x) reduce to the operators

Ln(f, x), defined by (3).

Throughout the paper let

Wn,α(x, t) = nan

∞∑

k=0

Q
(α)
n,k(x)χn,k(t),

where χn,k is the characteristic function of the interval [k/nan, (k + 1)/nan]

with respect to I ≡ [0,∞). Thus with this definition it is obvious that

L∗n,α(f, x) =

∞∫

0

f(t)Wn,α(x, t)dt.

In case α = 1,Wn,1(x, t) ≡ Wn(x, t) = nan

∞∑
k=0

pn,k(x)χn,k(t).

Gupta and Ispir [4] estimated the rate of convergence by the Bézier

variant of generalized Balazs Kantorovich operators for functions of bounded
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variation for the case α ≥ 1. In this paper we study the rate of convergence

for the case 0 < α < 1 Our main theorem is as follows:

Theorem 1. Let f be a function of bounded variation on every finite subin-

terval of [0,∞) and V b
a (gx) is the total variation of gx on [a, b]. If 0 < α < 1,

x ∈ (0,∞), r > 1 and Aα > 0 be given and f(t) = O(tr), t → ∞, then for

n sufficiently large

∣∣∣∣L∗n,α(f, x)− 1

2α f(x+)−
(

1− 1

2α

)
f(x−)

∣∣∣∣ ≤ E(n, x)+

+

[
2M(1 + x + x2) + anx

2

nanx2 +
Aα

(nan)mx2m

] n∑

k=1

V
x+x/

√
k

x−x/
√

k
(gx) + O((nan)−r),

where

E(n, x) ≤





√
1 + 3x√

nx
|f(x+)− f(x−)|+ 1√

2enx
εn(x)|f(x)− f(x−)|,

if an = 1, φn(x) = enx;

1 + anx√
2enanx

|f(x+)− f(x−)|+

+
[1 + (anx)2 + 0, 5(1 + anx)2]

(1 + anx)[1 +
√

nanx]
εn(x)|f(x)− f(x−)|,

if φn(x) = (1 + anx)n

εn(x) =





1, if x = k′/n for some k′ ∈ N
0, if x 6= k′/n for all k ∈ N

and

gx =





f(t)− f(x−), 0 ≤ 1 < x

0, t = x

f(t)− f(x+), x < t < ∞
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Some approximation properties for the special case φn(x) = (1 + x)n

and α = 1, were recently studied by O. Agratini [1], he has also estimated

the rate of convergence for bounded variation functions for this special case,

but the author was not able to find the explicitly the sign term of the above

estimate. This answer was given in the recent paper [4].

2 Auxiliary results

Lemma 1. For ei(t) = ti, i = 0, 1, 2, ... and for all x ≥ 0, we have

L∗n(e0, x) = 1, L∗n(e1, x) =
φn(anx)

nφ′n(anx)
x +

1

2nan

and

L∗n(e2, x) =
φ′′n(anx)

n2φn(anx)
x2 +

2

nan

φ′n(anx)

nφn(anx)
x +

1

3n2a2
n

.

Proof. From [5], it follows that

Ln(e0, x) = 1, Ln(e1, x) =
φ′n(anx)

nφn(anx)
x,

and

Ln(e2, x) =
φ′′n(anx)

n2φn(anx)
x2 +

1

nan

φ′n(anx)

nφn(anx)
x.

Using the above estimates, we have

L∗n(e2, x) = nan

∞∑

k=0

pn,k(x)

∫

In,k

t2dt = nan

∞∑

k=0

pn,k(x)
3k2 + 3k + 1

3n3a3
n

=

=
∞∑

k=0

(
k

nan

)2

pn,k(x) +
1

nan

∞∑

k=0

k

nan

pn,k(x) +
1

3n2a2
n

∞∑

k=0

pn,k(x) =

= Ln(e2, x) +
1

nan

Ln(e1, x) +
1

3n2a2
n

Ln(e0, x).
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Substituting the values of Ln(ei, x), i = 0, 1, 2, we get the desired result.

The proofs of L∗n(ei, x), i = 0, 1 are obvious.

Remark 1. Note that for sufficiently large n, there exists a constant M > 0

such that

µn,2(x) = L∗n((e1 − xe0)
2, x) ≤ M(1 + x + x2)

nan

.

Lemma 2. Let x ∈ (0,∞) and 0 < α < 1, then for sufficiently large n, we

have

βn,α(x, y) =

y∫

0

Wn,α(x, t)dt ≤ M(1 + x + x2)

nan(x− y)
, 0 ≤ y < x(5)

and

1− βn,α(x, z) =

∞∫

z

Wn,α(x, t)dt ≤ Aα

(nan)m(z − x)2m , x < z < ∞.(6)

Proof. We first prove (5). By Remark 1, there holds

y∫

0

Wn,α(x, t)dt ≤
y∫

0

Wn,α(x, t)
(x− t)2

(x− y)2dt ≤ (x− y)−2L∗n((t− x)2, x)

≤ M(1 + x + x2)

nan(x− y)2 , 0 ≤ y < x

where we have applied Lemma 1. this completes the proof of (5).

Next we prove (6). For 0 < α < 1 ,it is easily verified that

∞∫

z

Wn,α(x, t)dt ≤



∞∫

z

Wn(x, t)
(t− x)2m/α

(z − x)2m/α
dt




α

≤

≤ (z − x)−2m




∞∫

0

Wn(x, t)(t− x)2m/αdt




α

.
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For all conjugate p, q ≥ 1 i.e. 1
p + 1

q = 1, we have




∞∫

0

{Wn(x, t)}1/p{Wn(x, t)}1/q|t− x|2m/αdt




α

=

=




∞∫

0

Wn(x, t)|t− x|2mp/αdt




α/p 


∞∫

0

Wn(x, t)dt




α/q

Also since 


∞∫

0

Wn(x, t)dt




α/q

= 1

Choosing p = α
m

[m
α + 1

]
we have that 2mp/α is an even positive inte-

ger. By the well known results L∗n,1((t − x)2r, x) = O((nan)−r) as n → ∞
(r = 1, 2, 3, ...) we obtain




∞∫

0

Wn(x, t)|t− x|2mp/αdt




α/p

=

= (L∗n,1((t− x)2mp/α, x))α/p = O((nan)−m)

as n →∞.

This completes the proof of Lemma 2.

Lemma 3. For x ∈ (0,∞), we have

pn,k(x) ≤





1√
2enx

, if an = 1, φn(x) = enx

1 + anx√
2enanx

, if φn(x) = (1 + x)n
.

These bounds can be found in [7] and [8], we just have to replace the

variable for the second inequality.
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Lemma 4. For x ∈ (0,∞), we have:

(i) For an = 1, φn(x) = enx, we have
∣∣∣∣∣

∑

k>nanx

pn,k(x)− 1

2

∣∣∣∣∣ ≤
√

1 + 3x√
nx

.

(ii) For φn(x) = (1 + x)n, we have
∣∣∣∣∣∣

∑

k>nanx/(1+anx)

pn,k(x)− 1

2

∣∣∣∣∣∣
≤ [1 + (anx)2 + 0, 5(1 + anx)2]

(1 + anx)[1 +
√

nanx]
.

For the proof of above Lemma, we refer to [4].

Lemma 5. For x ∈ (0,∞), we have:

(i) For an = 1, φn(x) = enx, we have
∣∣∣∣∣

( ∑

k>nanx

pn,k(x)

)α

− 1

2α

∣∣∣∣∣ ≤
√

1 + 3x√
nx

;

(ii) For φn(x) = (1 + x)n, we have
∣∣∣∣∣∣


 ∑

k>nanx/(1+anx)

pn,k(x)




α

− 1

2α

∣∣∣∣∣∣
≤ [1 + (anx)2 + 0, 5(1 + anx)2]

(1 + anx)[1 +
√

nanx]
.

Proof. We prove (i), by mean value theorem, we have
∣∣∣∣∣

( ∑
j>nanx

pn,j(x)

)α

− 1

2α

∣∣∣∣∣ = α(ζn,j(x))α−1

∣∣∣∣∣
∑

j>nanx

pn,j(x)− 1

2

∣∣∣∣∣

where ζn,j(x) lies between 1
2 and

∑
j>nanx

pn,j(x). It is observed that for nan

sufficiently large, the intermediate point ςn,j is arbitrary close to 1/2 i.e.

ςn,j =
1

2 + ε
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with an arbitrary small |ε|. Then we have

α(ςn,j(x))α−1 ≤ α(2 + ε)1−α.

The latter expression is positive and strictly increasing for α ∈ (0, 1),

since
∂

∂α
α(2 + ε)1−α = (2 + ε)1−α[1− α log(2 + ε)] > 0,

for sufficiently small |ε|. Thus it takes maximum value at α = 1. This

implies

α(ζn,j(x))α−1 ≤ 1.

Hence by using Lemma 4, we have
∣∣∣∣∣

( ∑
j>nanx

pn,j(x)

)α

− 1

2α

∣∣∣∣∣ ≤
3
√

(1 + x)√
nx

.

The proof (ii) is similar.

3 Proof of theorem

Proof. Making use of the following for all n, we have

f(t) =
1

2α f(x+) +

(
1− 1

2α

)
f(x−) + gx(t) +

f(x+)− f(x−)

2α signx(t)+

+δx(t)

[
f(t)− 1

2α f(x+)−
(

1− 1

2α

)
f(x−)

]

where

signx(t) =





2α − 1, t > x

0, t = x

−1, t < x
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and

δx(t) =





1, x = t

0, x 6= t
.

It follows that

∣∣∣∣L∗n,α(f, x)− 1

2α f(x+)−
(

1− 1

2α

)
f(x−)

∣∣∣∣ ≤(7)

≤ |L∗n,α(gx, x)|+
∣∣∣∣
f(x+)− f(x−)

2α L∗n,α(sign(t− x), x)+

+

[
f(x)− 1

2α −
(

1− 1

2α

)
f(x−)

]
L∗n,α(δx, x)

∣∣∣∣ .

First we estimate L∗n,α(sign(t− x), x), as follows

|L∗n,α(sign(t− x), x)| ≤
∣∣∣∣∣

∞∑

k=k′+1

2αQ
(α)
n,k(x)− 1

∣∣∣∣∣ + εn(x)Q
(α)
n,k(x),

where

εn(x) =





1, if x = k′/n for some k′ ∈ N
0, if x 6= k′/n for all k ∈ N.

Also by direct calculation, we have

L∗n,α(δx, x) = εn(x)Q
(α)
n,k′(x)

Thus ∣∣∣∣
f(x+)− f(x−)

2α L∗n,α(sign(t− x), x)+

+

[
f(x)− 1

2α −
(

1− 1

2α

)
f(x−)

]
L∗n,α(δx, x)

∣∣∣∣ =

=

∣∣∣∣∣
f(x+)− f(x−)

2α

[
2α

( ∞∑

k=k′+1

pn,k(x)

)α

− 1

]
+



14 Vijay Gupta and Alexandru Lupaş

+[f(x)− f(x−)]εn(x)Q
(α)
n,k′(x)

∣∣∣

Now using Lemma 5 and Lemma 3, we obtain

∣∣∣∣∣
f(x+)− f(x−)

2α

[
2α

( ∞∑

k=k′+1

p
(x)
n,k

)α

− 1

]
+(8)

+ [f(x)− f(x−)]εn(x)Q
(α)
n,k′(x)

∣∣∣ ≤

≤





√
1 + 3x√

nx
|f(x+)− f(x−)|+ 1√

2enx
εn(x)|f(x)− f(x−)|

if an = 1, φn(x) = enx

1 + anx√
2enanx

|f(x+)− f(x−)|+

+
[1 + (anx)2 + 0, 5(1 + anx)2]

(1 + anx)[1 +
√

nanx]
εn(x)|f(x)− f(x−)|

if φn(x) = (1 + anx)n

Now we estimate L∗n,α(gx, x) as follows:

L∗n,α(gx, x) =

∞∫

0

gx(t)Wn,α(x, t)dt =

=




x−x/
√

n∫

0

+

x+x/
√

n∫

x−x/
√

n

+

2x∫

x+x/
√

n

+

∞∫

2x


 Wn,α(x, t)gx(t)dt =(9)

= E1 + E2 + E3 + E4, say.

We start with E2. For t ∈ [x− x/
√

n, x + x/
√

n], we have

|gx(t)| ≤ V
x+x/

√
n

x−x/
√

n
(gx) ≤ 1

n

n∑

k=1

V
x+x/

√
k

x−x/
√

k
(gx)

and thus

|E2| ≤ V
x+x/

√
n

x−x/
√

n
(gx) ≤ 1

n

n∑

k=1

V
x+x/

√
k

x−x/
√

k
(gx).(10)
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Next we estimate E1. Setting y = x − x/
√

n and integrating by parts,

we have

E1 =

y∫

0

gx(t)dt(βn,α(x, t)) = gx(y)βn,α(x, y)−
y∫

0

βn,α(x, t)dt(gx(t))

Since |gx(y)| ≤ V x
y (gx), we conclude

|E1| ≤ V x
y (gx)βn,α(x, y) +

y∫

0

βn,α(x, t)dt(−V x
t (gx))

Also y = x − x/
√

n ≤ x, therefore (5) of Lemma 2 implies for n suffi-

ciently large

|E1| ≤ M(1 + x + x2)

nan(x− y)2 V x
y (gx) +

M(1 + x + x2)

nan

y∫

0

1

(x− t)2dt(−V x
t (gx)).

Integrating by parts the last integral, we obtain

|E1| ≤ M(1 + x + x2)

nan


x−2V x

0 (gx) + 2

y∫

0

V x
t (gx)dt

(x− t)3


 .

Replacing the variable y in the last integral by x− x/
√

n, we get

x−x/
√

n∫

0

V x
t (gx)(x− t)−3dt =

n−1∑

k=1

x+x/
√

k∫

x−x/
√

k

V x
x−t(gx)t

−3dt ≤

≤ 1

2x2

n∑

k=1

V x
x−x/

√
k
(gx).

Hence

|E1| ≤ 2M(1 + x + x2)

nanx

n∑

k=1

V x
x−x/

√
k
(gx)(11)
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Next we estimate E3, choosing y = x + x/
√

n, we have

E3 = lim
R→−∞

{gx(y)[1− βn,α(x, y)] + ĝx(R)[βn,α(x,R)− 1]+

+

R∫

y

[1− βn,α(x, t)]dtĝx(t)



 .

By equation (6) of Lemma 2, we conclude for each λ > 1 and n sufficiently

large

|E3| ≤ Aα

(nan)m lim
R→+∞





V y
x (gx)

(y − x)2 +
ĝx(R)

(R− x)2 +

x∫

0

1

(t− x)2dt(V
t
x (ĝx))



 =

=
Aα

(nan)m





V y
x (gx)

(y − x)2m +

2x∫

0

1

(t− x)2m dt(V
t
x (gx))





Using the similar method as above, we get

2x∫

y

1

(t− x)2m dt(V
t
x (gx)) ≤ x−2mV 2x

x (gx)− V y
x (gx)

(y − x)2m + x−2m

n−1∑

k=1

V x+x/
√

k
x (gx)

which implies the estimate

|E3| ≤ 2Aα

(nan)mx2m

n∑

k=1

V x+x/
√

k
x (gx)(12)

Lastly we estimate E4. By assumption there exists an integer r > 1 such

that f(t) = O(t2r), t → ∞. Thus for certain constant M > 0 depending

only on f, x, r, we have

|E4| ≤ M1nan

∞∑

k=0

Q
(α)
n,k(x)

∞∫

2x

χn,k(t)t
2rdt ≤
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≤ M1nan

∞∑

k=0

pn,k(x)

∞∫

2x

χn,k(t)t
2rdt

By Lemma 1, we have

|E4| ≤ 2rML∗n((t− x)2r, x) = O((nan)−r), n →∞(13)

Finally collecting the estimates of (7) - (13), we get the required result.

This completes the proof of the theorem.
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Str. Dr. I. Raţiu, No. 5 - 7

550012 - Sibiu, Romania

E-mail: alexandru.lupas@ulbsibiu.ro


