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Abstract

Two kind of Dirichlet problems are solved explicitly for the in-
homogenous biharmonic equation in the unit disc of the complex
plane.
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1 Introduction

There are several possibilities to pose boundary conditions of Dirichlet type

for the inhomogeneous biharmonic equation

(∂z∂z̄)
2w = f in D

for a regular domain D of the complex plane C. Of course this is neither

restricted to the complex nor to the two-dimensional case. One possibility

is to prescribe

w = ϕ0 , ∂z∂z̄w = ϕ1 on ∂D

an other

w = ϕ0 , ∂z̄w = ϕ1 on ∂D.
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Obviously the second condition in the last problem can be replaced by

∂zw = ϕ1. This will lead to a dual form of the solution. Other Dirichlet-

type conditions are available, e.g.

∂z̄w = ϕ0, ∂z∂z̄ w = ϕ1 on ∂D
or

∂zw = ϕ0, ∂
2
z∂z̄ w = ϕ1 on ∂D

etc., see [3]. The above first problem obviously is well-posed. This can be

seen by reformulating the problem as the system

∂z∂z̄w = ω in ∂D, w = ϕ0 on ∂D

∂z∂z̄ω = f in D, ω = ϕ1 on ∂D.

It will turn out that the second problem is also well-posed.

Using the biharmonic Green function the solution can be given for arbitrary

regular domains in analogy to e.g. [5]. In order to get explicit solutions the

particular case of the unit disc is considered here.

2 First Dirichlet problem

Rewriting the problem

(∂z∂z̄)
2 w = f in D

(1)

w = γ0, ∂z∂z̄ w = γ1 on ∂D

as the system

(2) ∂z∂z̄w = ω in D, w = γ0 on ∂D,

(2′) ∂z∂z̄ω = f in D, ω = γ1 on ∂D

and using the solution of (2) in the form

(3) w(z) =
1

2πi

∫

∂D
g1(z, ζ)γ0(ζ)

dζ

ζ
+

1

π

∫

D
G1(z, ζ̃)ω(ζ̃)dξ̃dη̃
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where

(4) g1(z, ζ) =
1

1− zζ̃ +
1

1− z̄ζ − 1

is the Poisson kernel of the unit disc D and

(5) G1(z, ζ) = log

∣∣∣∣∣
1− zζ̃
ζ − z

∣∣∣∣∣

2

is twice the harmonic Green function an iteration process is providing the

unique solution to (1). The solution (3) of (2) ist well known, see e.g. [3].

Applying (3) to problem (2′) and eliminating ω gives

w(z) =
1

2πi

∫

∂D
g1(z, ζ)γ0(ζ)

dζ

ζ
+

1

2πi

∫

∂D
ĝ2(z, ζ)γ1(ζ)

dζ

ζ
+

(6)

+
1

π

∫

D
Ĝ2(z, ζ)f(ζ)dξdη

with

(7) ĝ2(zζ) =
1

π

∫

D
G1(z, ζ̄)g1(ζ̄ , ζ)dξ̃dη̃

and

(8) Ĝ2(z, ζ) =
1

π

∫

D
G1(z, ζ̃)G1(ζ̃ , ζ)dξ̃dη̃.

Evaluating the right-hand side of (7) shows

(9) ĝ2(z, ζ) = (|z|2 − 1)

[
1

zζ̄
log(1− zζ̃) +

1

z̄ζ
log(1− z̄ζ) + 1

]
.

This can be verified by applying

w(z) =
1

2πi

∫

∂D
w(ζ)

(
1

1− zζ̄ +
1

1− z̄ζ − 1

)
dζ

ζ
− 1

π

∫

D
wζζ̄(ζ)G1(z, ζ)dξdη,



68 Heinrich Begehr

see [3], to ĝ2(z, ζ). In the same way

Ĝ2(z, ζ) = |ζ − z|2 log

∣∣∣∣
1− zζ̄
ζ − z

∣∣∣∣
2

−
(10)

−(1− |z|2)(1− |ζ|2)

[
1

zζ̄
log(1− zζ) +

1

z̄ζ
log(1− z̄ζ)

]

follows using

G1(z, ζ) = ∂ζ∂ζ̄ |ζ − z|2 log

∣∣∣∣
1− zζ̄
ζ − z

∣∣∣∣+
1− |z|2
1− zζ̄ +

1− |z|2
1− z̄ζ .

The function (6) is easily to be verified as a solution to the first Dirichlet

problem (1). Using the properties of the Poisson kernel w = γ0 on ∂D is

seen. Differentiating (6) leads to

wzz̄(z) =
1

2πi

∫

∂D
g1(z, ζ)γ1

dζ

ζ
+

1

π

∫

D
G1(z, ζ)f(ζ)dξdη

from which wzz̄ = γ1 on ∂D and wzz̄zz̄ = f in D are seen.

Theorem 1. The first Dirichlet problem for the inhomogeneous biharmonic

equation wzz̄zz̄ = f in the unit disc D with

w = γ0 , wzz̄ = γ1 on ∂D

is uniquely solvable (in distributional sense) for f ∈ L1(D;C), γ0, γ1 ∈
C(∂D;C). The solution is given by (6) with the kernel functions (9) and

(10).

3 Second Dirichlet problem

For the second Dirichlet problem the biharmonic Green function given by

Almansi [1] is proper. For the unit disc it is

G2(z, ζ) = |ζ − z|2 log

∣∣∣∣
1− zζ̄
ζ − z

∣∣∣∣
2

− (1− |z|2)(1− |ζ|2).
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Applying the Gauß theorems in complex form

1

π

∫

D

wz(z)dxdy = − 1

2πi

∫

∂D

w(z)dz̄,

1

π

∫

D

wz̄(z)dxdy =
1

2πi

∫

∂D

w(z)dz

for regular domains D and continuously differentiable function w repeatedly

to
1

π

∫

D
wζζ̄ζζ̄(ζ)G2(z, ζ)dξdη

and observing

∂ζG2(z, ζ) = (ζ − z) log

∣∣∣∣
1− zζ̄
ζ − z

∣∣∣∣
2

− (1− |z|2)

[ |ζ − z|2
(ζ − z)(1− z̄ζ)

− ζ̄
]
,

∂ζ∂ζ̄G2(z, ζ) = log

∣∣∣∣
1− zζ̄
ζ − z

∣∣∣∣
2

− g1(z, ζ)(1− |z|2),

∂2
ζ∂ζ̄G2(z, ζ) = − 1

ζ − z −
z̄

1− z̄ζ −
z̄

(1− z̄ζ)2
(1− |z|2)

such that on ∂D for any z ∈ D

G2(z, ζ) = 0, ∂ζG2(z, ζ) = 0, ∂ζ̄G2(z, ζ) = 0

gives
1

π

∫

D
wζζ̄ζζ̄(ζ)G2(z, ζ)dξdη =

=
1

π

∫

D

{
∂ζ̄
[
wζζ̄ζ(ζ)G2(z, ζ)

]−∂ζwζζ̄(ζ)G2ζ̄(z, ζ)+wζζ̄(ζ)G2ζζ̄(z, ζ)

}
dξdη =

=
1

2πi

∫

∂D

{
wζζ̄ζ(ζ)G2(z, ζ)dζ + wζζ̄(ζ)G2ζ̄(z, ζ)dζ̄

}
+
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+
1

π

∫

D

{
∂ζ
[
wζ̄(ζ)G2ζζ̄(z, ζ)

]− wζ̄(ζ)G2ζζ̄ζ(z, ζ)

}
dξdη =

= − 1

2πi

∫

∂D
wζ̄(ζ)G2ζζ̄(z, ζ)dζ̄+

+
1

π

∫

D
wζ̄(ζ)

[
1

ζ − z +
z̄

1− z̄ζ +
z̄

(1− z̄ζ)2
(1− |z|2)

]
dξdη =

=
1

2πi

∫

∂D
wζ̄(ζ)g1(z, ζ)(1− |z|2)dζ̄ +

1

π

∫

D
wζ̄(ζ)

dξdη

ζ − z+

+
1

π

∫

D
∂ζ̄

[
w(ζ)

(
z̄

1− z̄ζ +
z̄

(1− z̄ζ)2
(1− |z|2)

)]
dξdη =

=
1

2πi

∫

∂D
w(ζ)

(
z̄

1− z̄ζ +
z̄

(1− z̄ζ)2
(1− |z|2)

)
dζ−

− 1

2πi

∫

∂D
wζ̄(ζ)g1(z, ζ)(1− |z|2)

dζ

ζ2
+

1

π

∫

D
wζ̄(ζ)

dξdη

ζ − z .

Using the Cauchy-Pompeiu formula, see e.g. [2],

w(z) =
1

2πi

∫

∂D
w(ζ)

dζ

ζ − z −
1

π

∫

D
wζ̄(ζ)

dξdη

ζ − z

results in a representation formula.

Lemma. Any w ∈ C4(D;C) ∩ C3(D̄;C) is representable by

w(z) =
1

2πi

∫

∂D
w(ζ)

[
g1(z, ζ) +

z̄ζ

(1− z̄ζ)2
(1− |z|2)

]
dζ

ζ
−

− 1

π

∫

D
wζζ̄ζζ̄(ζ)G2(z, ζ)dξdη.

This represenation provides the solution to the second Dirichlet problem.
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Theorem 2. The second Dirichlet problem for the inhomogeneous bihar-

monic equation

wzz̄zz̄ = f in D,
w = γ0, wz̄ = γ1 on ∂D

is uniquely solvable. The solution is

w(z) =
1

2πi

∫

∂D
γ0(ζ)

[
g1(z, ζ) +

z̄ζ

(1− z̄ζ)2
(1− |z|2)

]
dζ

ζ
−

− 1

2πi

∫

∂D
γ1(ζ)g1(z, ζ)(1− |z|2)

dζ

ζ2
−(11)

− 1

π

∫

D
f(ζ)G2(z, ζ)dξdη.

Proof. Uniqueness is obvious. If there is a solution it has the representa-

tion (11). That (12) in fact provides a solution is shown by verification. At

once w = γ0 on ∂D is seen by the properties of the Poisson kernel and the

second Green function. Differentiating (12) shows

wz̄(z) =
2

2πi

∫

∂D
γ0(ζ)

1

(1− z̄ζ)3
(1− |z|2)dζ+

+
z

2πi

∫

∂D
γ1(ζ)

[
g1(z, ζ)

1

ζ
− 1− |z|2

(1− z̄ζ)2

]
dζ

ζ
− 1

π

∫

D
f(ζ)G2z(z, ζ)dξdη.

This verifies the second boundary condition. While the boundary integrals

in (12) are biharmonic functions the area integral provides a particular

solution to the differential equation. This is seen from

∂2
z∂z̄

[
− 1

π

∫

D
f(ζ)G2(z, ζ)dξdη

]
=

= − 1

π

∫

D
f(ζ)

[
1

ζ − z −
ζ̄

1− zζ̄ −
ζ̄

(1− zζ̄)2
(1− |ζ|2)

]
dξdη.
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As this is the Pompeiu operator, see e.g. [2], and an additional analytic

function, thus

∂2
z∂

2
z̄

[
− 1

π

∫

D
f(ζ)G2(z, ζ)dξdη

]
= f(z).

Both kind of Dirichlet problems can be similarly solved for the inhomoge-

neous polyharmonic equation

(∂z∂z̄)
nw = f.

For the second kind problem this is done in [4]. The explicit form of the

solution to the first Dirichlet problem is not yet worked out.
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