Proof of the best bounds in Wallis' inequality

Chao-Ping Chen

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

Let $n \geq 1$ be an integer, then $$
\frac{1}{\sqrt{\pi\left(n+4 \pi^{-1}-1\right)}} \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi(n+1 / 4)}} .
$$

The constants $4 \pi^{-1}-1$ and $1 / 4$ are the best possible.

2000 Mathematical Subject Classification: Primary 26D20; Secondary 33B15.

Key words and phrases: Wallis' inequality, best bounds, gamma function.

The sine has the infinite product representation

$$
\begin{equation*}
\sin x=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{\pi^{2} n^{2}}\right) . \tag{1}
\end{equation*}
$$

Taking in (1) $x=\pi / 2$ gives well known the Wallis formula

$$
\begin{equation*}
\frac{\pi}{2}=\prod_{n=1}^{\infty}\left[\frac{(2 n)^{2}}{(2 n-1)(2 n+1)}\right] \tag{2}
\end{equation*}
$$

Motivated by (2), Kazarinoff [2] proved that

$$
\begin{equation*}
\frac{1}{\sqrt{\pi\left(n+\frac{1}{2}\right)}}<\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi\left(n+\frac{1}{4}\right)}} \tag{3}
\end{equation*}
$$

for $n \in \mathbb{N}$, the set of positive integers. We here show that, for $n \in \mathbb{N}$,

$$
\begin{equation*}
\frac{1}{\sqrt{\pi\left(n+4 \pi^{-1}-1\right)}} \leq \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}<\frac{1}{\sqrt{\pi(n+1 / 4)}} \tag{4}
\end{equation*}
$$

improving the lower bound and confirming the upper in (3), by a very simple argument. We also prove that the bounds in (4) are the best possible.

Proof. It is clear that

$$
\Gamma(n+1)=n!, \quad \Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}, \quad 2^{n} n!=(2 n)!!
$$

To prove the right hand inequality of (4), it suffices to show that

$$
\begin{equation*}
R_{n}=\frac{\Gamma\left(n+\frac{1}{2}\right) \sqrt{n+\frac{1}{4}}}{\Gamma(n+1)}<1 \tag{5}
\end{equation*}
$$

Using the recurrence relation for the gamma function $\Gamma(x+1)=x \Gamma(x)$ we conclude that

$$
\frac{R_{n}}{R_{n+1}}=\sqrt{\frac{n+\frac{1}{4}}{n+\frac{5}{4}}} \frac{n+1}{n+\frac{1}{2}}<1 \quad \text { for } \quad n \geq 1
$$

Hence, the sequence $\left\{R_{n}\right\}_{n=1}^{\infty}$ is strictly increasing with $n \in \mathbb{N}$.

From the asymptotic expansion [1, p. 257]

$$
\begin{equation*}
x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)}=1+\frac{(a-b)(a+b-1)}{2 x}+O\left(x^{-2}\right), \tag{6}
\end{equation*}
$$

we conclude that $\lim _{n \rightarrow \infty} R_{n}=1$, thus inequality (5) holds for all $n \in \mathbb{N}$.
The left hand side of inequality (4) is equivalent to

$$
\begin{equation*}
L_{n}=\frac{\Gamma\left(n+\frac{1}{2}\right) \sqrt{n+\frac{4}{\pi}-1}}{\Gamma(n+1)} \geq 1 \tag{7}
\end{equation*}
$$

It is easy to see that

$$
\frac{L_{n}}{L_{n+1}}=\sqrt{\frac{n+\frac{4}{\pi}-1}{n+\frac{4}{\pi}}} \frac{n+1}{n+\frac{1}{2}}>1 \quad \text { for } \quad n \geq 2
$$

Hence, the sequence $\left\{L_{n}\right\}_{n=1}^{\infty}$ is strictly decreasing for $n \geq 2$. By (6), we conclude that $\lim _{n \rightarrow \infty} L_{n}=1$, thus inequality (7) holds strictly for all $n \geq 2$. Clearly, the sign of equality in (7) holds for $n=1$. The proof is complete.

References

[1] M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965.
[2] D. K. Kazarinoff, On Wallis' formula, Edinburgh. Math. Soc. Notes, No. 40 (1956), 19-21.

Department of Applied Mathematics and Informatics,
Research Institute of Applied Mathematics,
Henan Polytechnic University,
Jiaozuo City, Henan 454010, China
E-mail:chenchaoping@hpu.edu.cn, chenchaoping@sohu.com

