
General Mathematics Vol. 13, No. 2 (2005), 95–104

Estimations of the Error for Two-point

Formula via Pre-Grüss Inequality
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1 Introduction

In the recent paper [4] N. Ujević use the generalization of pre-Grüss inequa-

lity to derive some better estimations of the error for Simpson’s quadrature

rule. In fact, he proved the next as his main result:
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Theorem 1. If g, h,Ψ ∈ L2(0, 1) and
∫ 1

0
Ψ(t)dt = 0 then we have

(1) |SΨ(g, h)| ≤ SΨ(g, g)1/2SΨ(h, h)1/2,

where

SΨ(g, h) =

∫ 1

0

g(t)h(t)dt−
∫ 1

0

g(t)dt

∫ 1

0

h(t)dt−
∫ 1

0

g(t)Ψ0(t)dt

∫ 1

0

h(t)Ψ0(t)dt

and Ψ0(t) = Ψ(t)/‖Ψ‖2.

Further, he gave some improvements of the Simpson’s inequality. For

example he get:

Theorem 2. Let I ⊂ R be a closed interval and a, b ∈ IntI, a < b. If

f : I → R is an absolutely continuous function with f ′ ∈ L2(a, b) then we

have

(2)

∣∣∣∣
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
−
∫ b

a

f(t)dt

∣∣∣∣ ≤
(b− a)3/2

6
K1,

where

(3) K2
1 = ‖f ′‖2

2 −
1

b− a
(∫ b

a

f ′(t)dt
)2

−
(∫ b

a

f ′(t)Ψ0(t)dt

)2

and Ψ(t) = t− a+b
2
,Ψ0(t) = Ψ(t)/‖Ψ‖2.

In this paper using the Theorem 1 we will give the similar result for Euler

two-point formula and for functions whose derivative of order n, n ≥ 1, is

from L2(0, 1) space. We will use interval [0, 1] because of simplicity and

since it involves no loss in generality.
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2 Estimations of the error for Euler two-

point formula

In the recent paper [3] the following identity, named Euler two-point for-

mula, has been proved. For n ≥ 1, x ∈ [0, 1
2

]
and every t ∈ [0, 1] we

have

(4)

∫ 1

0

f(t)dt = D(x)− Tn(x) +Rn(x)

where

D(x) =
1

2
[f(x) + f(1− x)] ,

T0(x) = 0 and

(5) Tm(x) =
1

2

m∑

k=1

B̃k(x)

k!

[
f (k−1)(1)− f (k−1)(0)

]
,

for 1 ≤ m ≤ n and x ∈ [0, 1
2

]
, while

B̃k(x) = Bk(x) +Bk(1− x), k ≥ 1,

Rn(x) =
1

2(n!)

∫ 1

0

Gx
n (t) f (n)(t)dt

and

Gx
n(t) = B∗n(x− t) +B∗n (1− x− t) , t ∈ R.

The identity holds for every function f : [0, 1] → R such that f (n−1) is

a continuous function of bounded variation on [0, 1]. The functions Bk(t)

are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli numbers, and

B∗k(t), k ≥ 0, are periodic functions of period 1, related to the Bernoulli

polynomials as

B∗k(t) = Bk(t), 0 ≤ t < 1 and B∗k(t+ 1) = B∗k(t), t ∈ R.
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The Bernoulli polynomials Bk(t), k ≥ 0 are uniquely determined by the

following identities

B′k(t) = kBk−1(t), k ≥ 1; B0(t) = 1, Bk(t+ 1)−Bk(t) = ktk−1, k ≥ 0.

For some further details on the Bernoulli polynomials and the Bernoulli

numbers see for example [1] or [2]. We have B∗0(t) = 1 and B∗1(t) is a

discontinuous function with a jump of −1 at each integer. It follows that

Bk(1) = Bk(0) = Bk for k ≥ 2, so that B∗k(t) are continuous functions for

k ≥ 2. We get

(6) B∗′k (t) = kB∗k−1(t), k ≥ 1

for every t ∈ R when k ≥ 3, and for every t ∈ R \ Z when k = 1, 2.

Theorem 3. If f : [0, 1] → R is such that f (n−1) is absolutely continuous

function with f (n) ∈ L2(0, 1) then we have

∣∣∣∣
∫ 1

0

f(t)dt−D(x) + Tn(x)

∣∣∣∣ ≤
1

2

[
2(−1)n−1

(2n)!
[B2n +B2n(1− 2x)]

]1/2

K,(7)

where

(8) K2 = ‖f (n)‖2
2 −

(∫ 1

0

f (n)(t)dt

)2

−
(∫ 1

0

f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =





1, t ∈ [0, 1
2

]

−1, t ∈ (1
2
, 1
] ,

while for n odd we have

Ψ(t) =





t+
Bn+1( 1

2
+x)

2(Bn+1(x)−Bn+1( 1
2

+x))
, t ∈ [0, 1

2

]
,

t+
Bn+1( 1

2
+x)−2Bn+1(x)

2(Bn+1(x)−Bn+1( 1
2

+x))
, t ∈ (1

2
, 1
]
.
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Proof. It is not difficult to verify that

(9)

∫ 1

0

Gn(t)dt = 0,

(10)

∫ 1

0

Ψ(t)dt = 0,

(11)

∫ 1

0

Gn(t)Ψ(t)dt = 0.

From (4), (9) and (11) it follows that

(12)

∫ 1

0

f(t)dt−D(x) + Tn(x) =
1

2(n!)

∫ 1

0

Gx
n(t)f (n)(t)dt−

− 1

2(n!)

∫ 1

0

Gx
n(t)dt

∫ 1

0

f (n)(t)dt−

− 1

2(n!)

∫ 1

0

Gx
n(t)Ψ0(t)dt

∫ 1

0

f (n)(t)Ψ0(t)dt =

=
1

2(n!)
SΨ(Gx

n, f
(n)).

Using (12) and (1) we get

(13)

∣∣∣∣
∫ 1

0

f(t)dt−D(x) + Tn(x)

∣∣∣∣ ≤
1

2(n!)
SΨ(Gx

n, G
x
n)1/2SΨ(f (n), f (n))1/2.

We also have (see [3])

SΨ(Gx
n, G

x
n) = ‖Gx

n‖2
2 −

(∫ 1

0

Gx
n(t)dt

)2

−
(∫ 1

0

Gx
n(t)Ψ0(t)dt

)2

=

= (−1)n−1 2(n!)2

(2n)!
[B2n +B2n(1− 2x)](14)

and

(15)

SΨ(f (n), f (n)) = ‖f (n)‖2
2 −

(∫ 1

0

f (n)(t)dt

)2

−
(∫ 1

0

f (n)(t)Ψ0(t)dt

)2

= K2.

From (13)-(15) we easily get (7).
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Remark 1.Function Ψ(t) can be any function witch satisfies conditions
∫ 1

0
Ψ(t)dt = 0 and

∫ 1

0
Gx
n(t)Ψ(t)dt = 0. Because Gx

n(1 − t) = (−1)nGx
n(t)

(see [3]), for n even we can take function Ψ(t) such that Ψ(1− t) = −Ψ(t).

For n odd we have to calculate Ψ(t) and with not lost in generality in our

theorem we take the form Ψ(t) =





t+ a, t ∈ [0, 1
2

]
,

t+ b, t ∈ (1
2
, 1
]
.

Remark 2.For n = 1 in Theorem 3 we have

(16)

∣∣∣∣
∫ 1

0

f(t)dt−D(x)

∣∣∣∣ ≤
1

2

[
1

3
− 2x+ 4x2

]1/2

K,

while

Ψ(t) =





t+ 1−12x2

24x−6
, t ∈ [0, 1

2

]
,

t+ 12x2−24x+5
24x−6

, t ∈ (1
2
, 1
]
.

Also, for n = 2 we have

(17)

∣∣∣∣
∫ 1

0

f(t)dt−D(x)

∣∣∣∣ ≤
1

2

[
1

180
− x2

3
+

4x3

3
− 4x4

3

]1/2

K,

while

Ψ(t) =





1, t ∈ [0, 1
2

]
,

−1, t ∈ (1
2
, 1
]
.

If in Theorem 3 we choose x = 0, 1/2, 1/3, 1/4 we get inequality related

to the trapezoid, the midpoint, the two-point Newton-Cotes and the two-

point MacLaurin formula:

Corollary 1. If f : [0, 1] → R is such that f (n−1) is absolutely continuous

function with f (n) ∈ L2(0, 1) then we have

∣∣∣∣
∫ 1

0

f(t)dt− 1

2
[f(0) + f(1)] + Tn(0)

∣∣∣∣ ≤
[

(−1)n−1

(2n)!
B2n

]1/2

K,(18)
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where T0(0) = 0,

Tn(0) =

bn/2c∑

k=1

B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]

and

K2 = ‖f (n)‖2
2 −

(∫ 1

0

f (n)(t)dt

)2

−
(∫ 1

0

f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =





1, t ∈ [0, 1
2

]
,

−1, t ∈ (1
2
, 1
]
,

while for n odd we have

Ψ(t) =





t+ 2−n−1
4−21−n , t ∈ [0, 1

2

]
,

t+ 2−n−3
4−21−n , t ∈ (1

2
, 1
]
.

Remark 3.For n = 1 in Corollary 1 we have
∣∣∣∣
∫ 1

0

f(t)dt− 1

2
[f(0) + f(1)]

∣∣∣∣ ≤
K

2
√

3
,

while

Ψ(t) =





t− 1
6
, t ∈ [0, 1

2

]
,

t− 5
6
, t ∈ (1

2
, 1
]
.

Corollary 2. If f : [0, 1] → R is such that f (n−1) is absolutely continuous

function with f (n) ∈ L2(0, 1) then we have

∣∣∣∣
∫ 1

0

f(t)dt− f
(

1

2

)
+ Tn

(
1

2

)∣∣∣∣ ≤
[

(−1)n−1

(2n)!
B2n

]1/2

K,(19)

where T0

(
1
2

)
= 0,

Tn

(
1

2

)
=

bn/2c∑

k=1

(21−2k − 1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
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and

K2 = ‖f (n)‖2
2 −

(∫ 1

0

f (n)(t)dt

)2

−
(∫ 1

0

f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =





1, t ∈ [0, 1
2

]
,

−1, t ∈ (1
2
, 1
]
,

while for n odd we have

Ψ(t) =





t+ 1
21−n−4

, t ∈ [0, 1
2

]
,

t+ 3−21−n
21−n−4

, t ∈ (1
2
, 1
]
.

Remark 4.For n = 1 in Corollary 2 we have

∣∣∣∣
∫ 1

0

f(t)dt− f
(

1

2

)∣∣∣∣ ≤
K

2
√

3
,

while

Ψ(t) =





t− 1
3
, t ∈ [0, 1

2

]
,

t− 2
3
, t ∈ (1

2
, 1
]
.

Corollary 3. If f : [0, 1] → R is such that f (n−1) is absolutely continuous

function with f (n) ∈ L2(0, 1) then we have

(20)

∣∣∣∣
∫ 1

0

f(t)dt− 1

2

[
f

(
1

3

)
+ f

(
2

3

)]
+ Tn

(
1

3

)∣∣∣∣ ≤

≤ 1

2

[
(−1)n−1

(2n)!
(1 + 31−2n)B2n

]1/2

K,

where T0

(
1
3

)
= 0,

Tn

(
1

3

)
=

1

2

bn/2c∑

k=1

(31−2k − 1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]
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and

K2 = ‖f (n)‖2
2 −

(∫ 1

0

f (n)(t)dt

)2

−
(∫ 1

0

f (n)(t)Ψ0(t)dt

)2

.

For n even

Ψ(t) =





1, t ∈ [0, 1
2

]
,

−1, t ∈ (1
2
, 1
]
,

while for n odd we have

Ψ(t) =





t+ 1−2n

22+n−2
, t ∈ [0, 1

2

]
,

t+ 1−3·2n
22+n−2n

, t ∈ (1
2
, 1
]
.

Remark 5. For n = 1 in Corollary 3 we have
∣∣∣∣
∫ 1

0

f(t)dt− 1

2

[
f

(
1

3

)
+ f

(
2

3

)]∣∣∣∣ ≤
K

6
,

while

Ψ(t) =





t− 1
6
, t ∈ [0, 1

2

]
,

t− 5
6
, t ∈ (1

2
, 1
]
.

Corollary 4. If f : [0, 1]→ R is such that f (2m−1) is absolutely continuous

function with f (2m) ∈ L2(0, 1) then we have

(21)∣∣∣∣
∫ 1

0

f(t)dt− 1

2

[
f

(
1

4

)
+ f

(
3

4

)]
+ T2m

(
1

4

)∣∣∣∣ ≤
[−2−4m

(4m)!
B4m

]1/2

K,

where T0

(
1
4

)
= 0,

T2m

(
1

4

)
=

m∑

k=1

2−2k(21−2k − 1)B2k

(2k)!

[
f (2k−1)(1)− f (2k−1)(0)

]

and

K2 = ‖f (2m)‖2
2 −

(∫ 1

0

f (2m)(t)dt

)2

−
(∫ 1

0

f (2m)(t)Ψ0(t)dt

)2

,
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while

Ψ(t) =





1, t ∈ [0, 1
2

]
,

−1, t ∈ (1
2
, 1
]
.
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