Estimations of the Error for Two-point Formula via Pre-Grüss Inequality

J. Pečarić and A. Vukelić
Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

Generalization of estimation of two-point formula is given, by using pre-Grüss inequality.

2000 Mathematical Subject Classification: 26D10, 41A55.

Key words and phrases: Pre-Grüss inequality, generalization, two-point formula.

1 Introduction

In the recent paper [4] N . Ujević use the generalization of pre-Grüss inequality to derive some better estimations of the error for Simpson's quadrature rule. In fact, he proved the next as his main result:

Theorem 1. If $g, h, \Psi \in L_{2}(0,1)$ and $\int_{0}^{1} \Psi(t) d t=0$ then we have

$$
\begin{equation*}
\left|S_{\Psi}(g, h)\right| \leq S_{\Psi}(g, g)^{1 / 2} S_{\Psi}(h, h)^{1 / 2} \tag{1}
\end{equation*}
$$

where
$S_{\Psi}(g, h)=\int_{0}^{1} g(t) h(t) d t-\int_{0}^{1} g(t) d t \int_{0}^{1} h(t) d t-\int_{0}^{1} g(t) \Psi_{0}(t) d t \int_{0}^{1} h(t) \Psi_{0}(t) d t$
and $\Psi_{0}(t)=\Psi(t) /\|\Psi\|_{2}$.

Further, he gave some improvements of the Simpson's inequality. For example he get:

Theorem 2. Let $I \subset \mathbb{R}$ be a closed interval and $a, b \in \operatorname{IntI}, a<b$. If $f: I \rightarrow \mathbb{R}$ is an absolutely continuous function with $f^{\prime} \in L_{2}(a, b)$ then we have

$$
\begin{equation*}
\left|\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\int_{a}^{b} f(t) d t\right| \leq \frac{(b-a)^{3 / 2}}{6} K_{1}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}^{2}=\left\|f^{\prime}\right\|_{2}^{2}-\frac{1}{b-a}\left(\int_{a}^{b} f^{\prime}(t) d t\right)^{2}-\left(\int_{a}^{b} f^{\prime}(t) \Psi_{0}(t) d t\right)^{2} \tag{3}
\end{equation*}
$$

and $\Psi(t)=t-\frac{a+b}{2}, \Psi_{0}(t)=\Psi(t) /\|\Psi\|_{2}$.

In this paper using the Theorem 1 we will give the similar result for Euler two-point formula and for functions whose derivative of order $n, n \geq 1$, is from $L_{2}(0,1)$ space. We will use interval $[0,1]$ because of simplicity and since it involves no loss in generality.

2 Estimations of the error for Euler twopoint formula

In the recent paper [3] the following identity, named Euler two-point formula, has been proved. For $n \geq 1, x \in\left[0, \frac{1}{2}\right]$ and every $t \in[0,1]$ we have

$$
\begin{equation*}
\int_{0}^{1} f(t) \mathrm{d} t=D(x)-T_{n}(x)+R_{n}(x) \tag{4}
\end{equation*}
$$

where

$$
D(x)=\frac{1}{2}[f(x)+f(1-x)],
$$

$T_{0}(x)=0$ and

$$
\begin{equation*}
T_{m}(x)=\frac{1}{2} \sum_{k=1}^{m} \frac{\tilde{B}_{k}(x)}{k!}\left[f^{(k-1)}(1)-f^{(k-1)}(0)\right], \tag{5}
\end{equation*}
$$

for $1 \leq m \leq n$ and $x \in\left[0, \frac{1}{2}\right]$, while

$$
\begin{gathered}
\tilde{B}_{k}(x)=B_{k}(x)+B_{k}(1-x), k \geq 1 \\
R_{n}(x)=\frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) f^{(n)}(t) d t
\end{gathered}
$$

and

$$
G_{n}^{x}(t)=B_{n}^{*}(x-t)+B_{n}^{*}(1-x-t), t \in \mathbb{R}
$$

The identity holds for every function $f:[0,1] \rightarrow \mathbb{R}$ such that $f^{(n-1)}$ is a continuous function of bounded variation on $[0,1]$. The functions $B_{k}(t)$ are the Bernoulli polynomials, $B_{k}=B_{k}(0)$ are the Bernoulli numbers, and $B_{k}^{*}(t), k \geq 0$, are periodic functions of period 1 , related to the Bernoulli polynomials as

$$
B_{k}^{*}(t)=B_{k}(t), 0 \leq t<1 \quad \text { and } \quad B_{k}^{*}(t+1)=B_{k}^{*}(t), t \in \mathbb{R} .
$$

The Bernoulli polynomials $B_{k}(t), k \geq 0$ are uniquely determined by the following identities

$$
B_{k}^{\prime}(t)=k B_{k-1}(t), k \geq 1 ; B_{0}(t)=1, B_{k}(t+1)-B_{k}(t)=k t^{k-1}, k \geq 0
$$

For some further details on the Bernoulli polynomials and the Bernoulli numbers see for example [1] or [2]. We have $B_{0}^{*}(t)=1$ and $B_{1}^{*}(t)$ is a discontinuous function with a jump of -1 at each integer. It follows that $B_{k}(1)=B_{k}(0)=B_{k}$ for $k \geq 2$, so that $B_{k}^{*}(t)$ are continuous functions for $k \geq 2$. We get

$$
\begin{equation*}
B_{k}^{* \prime}(t)=k B_{k-1}^{*}(t), k \geq 1 \tag{6}
\end{equation*}
$$

for every $t \in \mathbb{R}$ when $k \geq 3$, and for every $t \in \mathbb{R} \backslash \mathbb{Z}$ when $k=1,2$.
Theorem 3. If $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_{2}(0,1)$ then we have

$$
\text { (7) }\left|\int_{0}^{1} f(t) \mathrm{d} t-D(x)+T_{n}(x)\right| \leq \frac{1}{2}\left[\frac{2(-1)^{n-1}}{(2 n)!}\left[B_{2 n}+B_{2 n}(1-2 x)\right]\right]^{1 / 2} K
$$

where

$$
\begin{equation*}
K^{2}=\left\|f^{(n)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(n)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t\right)^{2} \tag{8}
\end{equation*}
$$

For n even

$$
\Psi(t)=\left\{\begin{array}{cc}
1, & t \in\left[0, \frac{1}{2}\right] \\
-1, & t \in\left(\frac{1}{2}, 1\right]
\end{array},\right.
$$

while for n odd we have

$$
\Psi(t)= \begin{cases}t+\frac{B_{n+1}\left(\frac{1}{2}+x\right)}{2\left(B_{n+1}(x)-B_{n+1}\left(\frac{1}{2}+x\right)\right)}, & t \in\left[0, \frac{1}{2}\right], \\ t+\frac{B_{n+1}\left(\frac{1}{2}+x\right)-2 B_{n+1}(x)}{2\left(B_{n+1}(x)-B_{n+1}\left(\frac{1}{2}+x\right)\right)}, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Proof. It is not difficult to verify that

$$
\begin{gather*}
\int_{0}^{1} G_{n}(t) d t=0 \tag{9}\\
\int_{0}^{1} \Psi(t) d t=0 \\
\int_{0}^{1} G_{n}(t) \Psi(t) d t=0
\end{gather*}
$$

From (4), (9) and (11) it follows that

$$
\begin{gather*}
\int_{0}^{1} f(t) \mathrm{d} t-D(x)+T_{n}(x)=\frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) f^{(n)}(t) d t- \tag{12}\\
-\frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) d t \int_{0}^{1} f^{(n)}(t) d t- \\
-\frac{1}{2(n!)} \int_{0}^{1} G_{n}^{x}(t) \Psi_{0}(t) d t \int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t= \\
=\frac{1}{2(n!)} S_{\Psi}\left(G_{n}^{x}, f^{(n)}\right)
\end{gather*}
$$

Using (12) and (1) we get
(13) $\left|\int_{0}^{1} f(t) \mathrm{d} t-D(x)+T_{n}(x)\right| \leq \frac{1}{2(n!)} S_{\Psi}\left(G_{n}^{x}, G_{n}^{x}\right)^{1 / 2} S_{\Psi}\left(f^{(n)}, f^{(n)}\right)^{1 / 2}$.

We also have (see [3])

$$
\begin{align*}
S_{\Psi}\left(G_{n}^{x}, G_{n}^{x}\right) & =\left\|G_{n}^{x}\right\|_{2}^{2}-\left(\int_{0}^{1} G_{n}^{x}(t) d t\right)^{2}-\left(\int_{0}^{1} G_{n}^{x}(t) \Psi_{0}(t) d t\right)^{2}= \\
& =(-1)^{n-1} \frac{2(n!)^{2}}{(2 n)!}\left[B_{2 n}+B_{2 n}(1-2 x)\right] \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
S_{\Psi}\left(f^{(n)}, f^{(n)}\right)=\left\|f^{(n)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(n)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t\right)^{2}=K^{2} \tag{15}
\end{equation*}
$$

From (13)-(15) we easily get (7).

Remark 1.Function $\Psi(t)$ can be any function witch satisfies conditions $\int_{0}^{1} \Psi(t) d t=0$ and $\int_{0}^{1} G_{n}^{x}(t) \Psi(t) d t=0$. Because $G_{n}^{x}(1-t)=(-1)^{n} G_{n}^{x}(t)$ (see [3]), for n even we can take function $\Psi(t)$ such that $\Psi(1-t)=-\Psi(t)$. For n odd we have to calculate $\Psi(t)$ and with not lost in generality in our theorem we take the form $\Psi(t)= \begin{cases}t+a, & t \in\left[0, \frac{1}{2}\right], \\ t+b, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}$
Remark 2.For $n=1$ in Theorem 3 we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) \mathrm{d} t-D(x)\right| \leq \frac{1}{2}\left[\frac{1}{3}-2 x+4 x^{2}\right]^{1 / 2} K \tag{16}
\end{equation*}
$$

while

$$
\Psi(t)=\left\{\begin{array}{cl}
t+\frac{1-12 x^{2}}{24 x-6}, & t \in\left[0, \frac{1}{2}\right] \\
t+\frac{12 x^{2}-24 x+5}{24 x-6}, & t \in\left(\frac{1}{2}, 1\right]
\end{array}\right.
$$

Also, for $n=2$ we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) \mathrm{d} t-D(x)\right| \leq \frac{1}{2}\left[\frac{1}{180}-\frac{x^{2}}{3}+\frac{4 x^{3}}{3}-\frac{4 x^{4}}{3}\right]^{1 / 2} K \tag{17}
\end{equation*}
$$

while

$$
\Psi(t)=\left\{\begin{aligned}
1, & t \in\left[0, \frac{1}{2}\right] \\
-1, & t \in\left(\frac{1}{2}, 1\right]
\end{aligned}\right.
$$

If in Theorem 3 we choose $x=0,1 / 2,1 / 3,1 / 4$ we get inequality related to the trapezoid, the midpoint, the two-point Newton-Cotes and the twopoint MacLaurin formula:

Corollary 1. If $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_{2}(0,1)$ then we have
(18) $\left|\int_{0}^{1} f(t) \mathrm{d} t-\frac{1}{2}[f(0)+f(1)]+T_{n}(0)\right| \leq\left[\frac{(-1)^{n-1}}{(2 n)!} B_{2 n}\right]^{1 / 2} K$,
where $T_{0}(0)=0$,

$$
T_{n}(0)=\sum_{k=1}^{\lfloor n / 2\rfloor} \frac{B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right]
$$

and

$$
K^{2}=\left\|f^{(n)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(n)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t\right)^{2}
$$

For n even

$$
\Psi(t)=\left\{\begin{aligned}
1, & t \in\left[0, \frac{1}{2}\right], \\
-1, & t \in\left(\frac{1}{2}, 1\right],
\end{aligned}\right.
$$

while for n odd we have

$$
\Psi(t)= \begin{cases}t+\frac{2^{-n}-1}{4-2^{1-n}}, & t \in\left[0, \frac{1}{2}\right], \\ t+\frac{2^{-n}-3}{4-2^{1-n}}, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Remark 3.For $n=1$ in Corollary 1 we have

$$
\left|\int_{0}^{1} f(t) \mathrm{d} t-\frac{1}{2}[f(0)+f(1)]\right| \leq \frac{K}{2 \sqrt{3}},
$$

while

$$
\Psi(t)= \begin{cases}t-\frac{1}{6}, & t \in\left[0, \frac{1}{2}\right], \\ t-\frac{5}{6}, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Corollary 2. If $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_{2}(0,1)$ then we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) \mathrm{d} t-f\left(\frac{1}{2}\right)+T_{n}\left(\frac{1}{2}\right)\right| \leq\left[\frac{(-1)^{n-1}}{(2 n)!} B_{2 n}\right]^{1 / 2} K \tag{19}
\end{equation*}
$$

where $T_{0}\left(\frac{1}{2}\right)=0$,

$$
T_{n}\left(\frac{1}{2}\right)=\sum_{k=1}^{\lfloor n / 2\rfloor} \frac{\left(2^{1-2 k}-1\right) B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right]
$$

and

$$
K^{2}=\left\|f^{(n)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(n)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t\right)^{2}
$$

For n even

$$
\Psi(t)=\left\{\begin{aligned}
1, & t \in\left[0, \frac{1}{2}\right] \\
-1, & t \in\left(\frac{1}{2}, 1\right]
\end{aligned}\right.
$$

while for n odd we have

$$
\Psi(t)= \begin{cases}t+\frac{1}{2^{1-n}-4}, & t \in\left[0, \frac{1}{2}\right] \\ t+\frac{3-2^{1-n}}{2^{1-n}-4}, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Remark 4. For $n=1$ in Corollary 2 we have

$$
\left|\int_{0}^{1} f(t) \mathrm{d} t-f\left(\frac{1}{2}\right)\right| \leq \frac{K}{2 \sqrt{3}},
$$

while

$$
\Psi(t)= \begin{cases}t-\frac{1}{3}, & t \in\left[0, \frac{1}{2}\right] \\ t-\frac{2}{3}, & t \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Corollary 3. If $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(n-1)}$ is absolutely continuous function with $f^{(n)} \in L_{2}(0,1)$ then we have

$$
\begin{align*}
& \left|\int_{0}^{1} f(t) \mathrm{d} t-\frac{1}{2}\left[f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)\right]+T_{n}\left(\frac{1}{3}\right)\right| \leq \tag{20}\\
& \quad \leq \frac{1}{2}\left[\frac{(-1)^{n-1}}{(2 n)!}\left(1+3^{1-2 n}\right) B_{2 n}\right]^{1 / 2} K
\end{align*}
$$

where $T_{0}\left(\frac{1}{3}\right)=0$,

$$
T_{n}\left(\frac{1}{3}\right)=\frac{1}{2} \sum_{k=1}^{\lfloor n / 2\rfloor} \frac{\left(3^{1-2 k}-1\right) B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right]
$$

and

$$
K^{2}=\left\|f^{(n)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(n)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(n)}(t) \Psi_{0}(t) d t\right)^{2}
$$

For n even

$$
\Psi(t)=\left\{\begin{aligned}
1, & t \in\left[0, \frac{1}{2}\right] \\
-1, & t \in\left(\frac{1}{2}, 1\right]
\end{aligned}\right.
$$

while for n odd we have

$$
\Psi(t)= \begin{cases}t+\frac{1-2^{n}}{2^{2+n}-2}, & t \in\left[0, \frac{1}{2}\right], \\ t+\frac{1-3 \cdot 2^{n}}{2^{2+n}-2 n}, & t \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Remark 5. For $n=1$ in Corollary 3 we have

$$
\left|\int_{0}^{1} f(t) \mathrm{d} t-\frac{1}{2}\left[f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)\right]\right| \leq \frac{K}{6},
$$

while

$$
\Psi(t)= \begin{cases}t-\frac{1}{6}, & t \in\left[0, \frac{1}{2}\right] \\ t-\frac{5}{6}, & t \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Corollary 4. If $f:[0,1] \rightarrow \mathbb{R}$ is such that $f^{(2 m-1)}$ is absolutely continuous function with $f^{(2 m)} \in L_{2}(0,1)$ then we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) \mathrm{d} t-\frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)\right]+T_{2 m}\left(\frac{1}{4}\right)\right| \leq\left[\frac{-2^{-4 m}}{(4 m)!} B_{4 m}\right]^{1 / 2} K \tag{21}
\end{equation*}
$$

where $T_{0}\left(\frac{1}{4}\right)=0$,

$$
T_{2 m}\left(\frac{1}{4}\right)=\sum_{k=1}^{m} \frac{2^{-2 k}\left(2^{1-2 k}-1\right) B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(1)-f^{(2 k-1)}(0)\right]
$$

and

$$
K^{2}=\left\|f^{(2 m)}\right\|_{2}^{2}-\left(\int_{0}^{1} f^{(2 m)}(t) d t\right)^{2}-\left(\int_{0}^{1} f^{(2 m)}(t) \Psi_{0}(t) d t\right)^{2}
$$

while

$$
\Psi(t)=\left\{\begin{aligned}
1, & t \in\left[0, \frac{1}{2}\right] \\
-1, & t \in\left(\frac{1}{2}, 1\right]
\end{aligned}\right.
$$

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of mathematical functions with formulae, graphs and mathematical tables, National Bureau of Standards, Applied Math.Series 55, 4th printing, Washington 1965.
[2] I.S. Berezin and N.P. Zhidkov, Computing methods, Vol. I. Pergamon Press, Oxford-London-Edinburgh-New York-Paris-Frankfurt, 1965.
[3] J. Pečarić, I. Perić, A. Vukelić, Sharp integral inequalities based on general Euler two-point formulae, ANZIAM J. 46(2005), 555-574.
[4] N. Ujević, New bounds for Simpson's inequality. Tamkang J. of Math., Vol. 33, No. 2, (2002), 129-138.

Faculty of Food Technology and Biotechnology,
Mathematics Department, University of Zagreb,
Pierottijeva 6, 10000 Zagreb, Croatia
E-mail:avukelic@pbf.hr

