A New Criterion for Meromorphically Convex Functions of Order α

H. E. Darwish, M. K. Aouf and G. S. Sǎlăgean
Dedicated to Professor Dumitru Acu on his 60th anniversary

$$
\begin{aligned}
& \text { Abstract } \\
& \text { Let } J_{n}(\alpha) \text { denote the classes of functions of the form } \\
& \qquad f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k}, \\
& \text { which are regular in the punctured disc } U^{*}=\{z: 0<|z|<1\} \text { and } \\
& \text { satisfy } \\
& \qquad \operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha}{n+1}, \quad z \in U^{*}, \\
& n \in \mathbb{N}=\{0,1, \ldots\} \text { and } \alpha \in[0,1), \text { where } \\
& \qquad D^{n} f(z)=\frac{1}{z}\left(\frac{z^{n+1} f(z)}{n!}\right)^{(n)} .
\end{aligned}
$$

In this paper it is proved that $J_{n+1}(\alpha) \subset J_{n}(\alpha)(n \in \mathbb{N}$ and $\alpha \in$ $[0,1))$. Since $J_{0}(\alpha)$ is the class of meromorphically convex functions of order $\alpha, \alpha \in[0,1)$, all functions in $J_{n}(\alpha)$ are meromorphically convex functions of order α. Further we consider the integrals of the functions in $J_{n}(\alpha)$.

2000 Mathematics Subject Classification: 30C45 and 30C50.
Keywords: Meromorphically convex, Hadamard product.

1 Introduction

Let Σ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are regular in the punctured disc $U^{*}=\{z: 0<|z|<1\}$.
The Hadamard product of two functions $f, g \in \Sigma$ will be denoted by $f * g$. Let

$$
\begin{gathered}
D^{n} f(z)=\frac{1}{z(1-z)^{n+1}} * f(z)=\frac{1}{z}\left(\frac{z^{n+1} f(z)}{n!}\right)^{(n)}= \\
\quad=\frac{1}{z}+(n+1) a_{0}+\frac{(n+1)(n+2)}{2!} a_{1} z+\ldots
\end{gathered}
$$

In this paper among other things we shall show that a function f in Σ, which satisfies one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha}{n+1}, \quad z \in U^{*}, \quad n \in \mathbb{N} \tag{2}
\end{equation*}
$$

for $\alpha \in[0,1)$, is meromorphically convex of order α in U^{*}. More precisely, it is proved that for the classes $J_{n}(\alpha)$ of functions in Σ satisfying (2)

$$
\begin{equation*}
J_{n+1}(\alpha) \subset J_{n}(\alpha), \quad(n \in \mathbb{N}, \alpha \in[0,1)) \tag{3}
\end{equation*}
$$

holds. Since $J_{0}(\alpha)=\Sigma_{k}(\alpha)$ (the class of meromorphically convex functions of order α, $\alpha \in[0,1))$ the convexity of the members of $J_{n}(\alpha)$ is a consequence of (3).

We note that in [1] Aouf and Hossen obtained a new criterion for meromorphic univalent functions via the basic inclusion relationship $M_{n+1}(\alpha) \subset$
$M_{n}(\alpha), \quad n \in \mathbb{N}$ and $\alpha \in[0,1)$, where $M_{n}(\alpha)$ is the class consisting of functions in Σ satisfying

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-2\right\}<-\frac{n+\alpha}{n+1}, \quad z \in U^{*}
$$

$n \in \mathbb{N}$ and $\alpha \in[0,1)$.
Futher, for $c \in(0, \infty)$ let

$$
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t
$$

In this paper it is shown that $F \in J_{n}(\alpha)$ whenever $f \in J_{n}(\alpha)$. Also it is shown that if $f \in J_{n}(\alpha)$, then

$$
\begin{equation*}
F(z)=\frac{n+1}{z^{n+2}} \int_{0}^{z} t^{n+1} f(t) d t \tag{4}
\end{equation*}
$$

belongs to $J_{n+1}(\alpha)$. Some known results of Bajpai [2], Goel and Sohi [3], Uralegaddi and Ganigi [10] and Sǎlăgean [8] are extended. Techniques are similar to those in [6] (see also [4], [5] and [8]).

2 The classes $J_{n}(\alpha)$

In order to prove our main results (Theorem 1 and Theorem 2 below) we shall need the following lemma due to S. S. Miller and P. T. Mocanu [4], [5] (see also [6] or [8])
Lemma A. Let the function $\Psi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ satisfy

$$
\operatorname{Re} \Psi(i x, y) \leq 0
$$

for all real x and for all real $y, y \leq-\left(1+x^{2}\right) / 2$. If $p(z)=1+p_{1} z+\ldots$ is analytic in the unit disc $U=\{z:|z|<1\}$ and

$$
\operatorname{Re} \Phi\left(p(z), z p^{\prime}(z)\right)>0, \quad z \in U
$$

then $\operatorname{Re} p(z)>0$ for $z \in U$.
Theorem 1. $J_{n+1}(\alpha) \subset J_{n}(\alpha)$ for each integer $n \in \mathbb{N}$ and $\alpha \in[0,1)$.
Proof. Let f be in $J_{n+1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-2\right\}<-\frac{n+1+\alpha}{n+2}, \quad z \in U^{*} \tag{1}
\end{equation*}
$$

We have to show that (1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha}{n+1}, \quad z \in U^{*} \tag{2}
\end{equation*}
$$

We define the regular in $U=\{z:|z|<1\}$ function p by

$$
p(z)=\frac{n+2-\alpha}{1-\alpha}-\frac{n+1}{1-\alpha} \frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}, \quad z \in U^{*}
$$

and $p(0)=1$. We have

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{1}{n+1}(n+2-\alpha-(1-\alpha) p(z)) \tag{3}
\end{equation*}
$$

Differentiating (3) logarithmically, we obtain

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime \prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-\frac{\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{-(1-\alpha) z p^{\prime}(z)}{n+2-\alpha-(1-\alpha) p(z)} \tag{4}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=(n+1) D^{n+1} f(z)-(n+2) D^{n} f(z) \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime \prime}=(n+1)\left(D^{n+1} f(z)\right)^{\prime}-(n+3)\left(D^{n} f(z)\right)^{\prime} \tag{6}
\end{equation*}
$$

Using the identity (6) the equation (4) may be written
$(n+2)\left\{\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-2\right\}+n+1+\alpha+(1-\alpha) p(z)=\frac{-(1-\alpha) z p^{\prime}(z)}{n+2-\alpha-(1-\alpha) p(z)}$
or
(7)

$$
p(z)+\frac{z p^{\prime}(z)}{n+2-\alpha-(1-\alpha) p(z)}=\frac{n+2}{1-\alpha}\left[2-\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-\frac{n+1+\alpha}{n+2}\right]
$$

Since $f \in J_{n+1}(\alpha)$, from (1) and (7) we have

$$
\begin{equation*}
\operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{n+2-\alpha-(1-\alpha) p(z)}\right\}>0, \quad z \in U \tag{8}
\end{equation*}
$$

We define the function Ψ by

$$
\begin{equation*}
\Psi(u, v)=u+v /(n+2-\alpha-(1-\alpha) u) . \tag{9}
\end{equation*}
$$

In order to use Lemma A we must verify that $\operatorname{Re} \Psi(i x, y) \leq 0$ whenever x and y are real numbers such that $y \leq-\left(1+x^{2}\right) / 2$. We have

$$
\begin{gathered}
\operatorname{Re} \Psi(i x, y)=y \operatorname{Re} \frac{1}{n+2-\alpha-(1-\alpha) x i}=y \frac{n+2-\alpha}{(n+2-\alpha)^{2}+(1-\alpha)^{2} x^{2}} \leq \\
\leq-\frac{(1+x)^{2}(n+2-\alpha)}{(n+2-\alpha)^{2}+(1-\alpha)^{2} x^{2}}<0 .
\end{gathered}
$$

From (8) and (9) we obtain

$$
\operatorname{Re} \Psi\left(p(z), z p^{\prime}(z)\right)>0, \quad z \in U
$$

By Lemma A we conclude that $\operatorname{Re} p(z)>0$ in U and (see (5)) this implies the inequality (2).

3 Integral operators

Theorem 2. Let f be a function in Σ; if for a given $n \in \mathbb{N}$ and $c \in(0, \infty) f$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-2\right\}<\frac{1-\alpha-2(n+\alpha)(c+1-\alpha)}{2(n+1)(c+1-\alpha)}, \quad z \in U^{*} \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \tag{11}
\end{equation*}
$$

belongs to $J_{n}(\alpha)$.
Proof. Using the identity

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}=c\left(D^{n} f(z)\right)-(c+1)\left(D^{n} F(z)\right) \tag{12}
\end{equation*}
$$

obtained from (11) and the identity (5) for the function F the condition (10) may be written
$\operatorname{Re}\left\{\frac{(n+2) \frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-n-2+c}{(n+1)-(n+1-c) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}}\right\}-2<\frac{1-\alpha-2(n+\alpha)(c+1-\alpha)}{2(n+1)(c+1-\alpha)}$.
We have to prove that (13) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha}{n+1}, \quad z \in U^{*} . \tag{14}
\end{equation*}
$$

We define the regular in U function p by

$$
\begin{equation*}
p(z)=\frac{n+2-\alpha}{1-\alpha}-\frac{n+1}{1-\alpha} \frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}, \quad z \in U^{*} \tag{15}
\end{equation*}
$$

and $p(0)=1$.
From (6) we have

$$
\begin{equation*}
\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}=\frac{n+2-\alpha-(1-\alpha) p(z)}{n+1} \tag{16}
\end{equation*}
$$

and for the function F instead of f the identity (15) becomes

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime \prime}=(n+1)\left(D^{n+1} F(z)\right)^{\prime}-(n+3)\left(D^{n} F(z)\right)^{\prime} \tag{17}
\end{equation*}
$$

Differentiating (16) logarithmically and using (17) we obtain

$$
\begin{gathered}
\frac{(n+2) \frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-n-2+c}{(n+1)-(n+1-c) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-2=} \\
=\frac{1}{n+1}\left[-n-\alpha-(1-\alpha) p(z)-\frac{(1-\alpha) z p^{\prime}(z)}{1-\alpha+c-(1-\alpha) p(z)}\right]
\end{gathered}
$$

and (13) is equivalent to

$$
\begin{equation*}
\frac{1-\alpha}{n+1} \operatorname{Re}\left\{p(z)+\frac{z p^{\prime}(z)}{1-\alpha+c-(1-\alpha) p(z)}+\frac{1}{2(c+1-\alpha)}\right\}>0, \quad z \in U \tag{18}
\end{equation*}
$$

We define the function Ψ by

$$
\Psi(u, v)=\frac{1-\alpha}{n+1}\left[u+\frac{v}{1-\alpha+c-(1-\alpha) u}+\frac{1}{2(c+1-\alpha)}\right]
$$

For the real numbers x, y with $y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{gathered}
\operatorname{Re} \Psi(i x, y)=\frac{1-\alpha}{n+1}\left[\frac{1}{2(c+1-\alpha)}+\operatorname{Re} \frac{y}{c+1-\alpha-(1-\alpha) x i}\right]= \\
=\frac{1-\alpha}{n+1}\left[\frac{1}{2(c+1-\alpha)}-\frac{\left(1+x^{2}\right)(c+1-\alpha)}{2\left[(c+1-\alpha)^{2}+(1-\alpha)^{2} x^{2}\right]}\right]= \\
=\frac{1-\alpha}{n+1} \frac{-2(1-\alpha) c-c^{2}}{2\left[(c+1-\alpha)^{2}+(1-\alpha)^{2} x^{2}\right](c+1-\alpha)}<0 .
\end{gathered}
$$

We obtained that Ψ satisfies the conditions of Lemma A. This implies $\operatorname{Re} p(z)>0$, and from (15) it follows that (12) implies (14), that is $F \in$ $J_{n}(\alpha)$.

Putting $n=0$ in the statement of Theorem 2 we obtain the following result
Corollary 1. If $f \in \Sigma$ and satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{1-\alpha-2 \alpha(c+1-\alpha)}{2(c+1-\alpha)},
$$

then F given by (11) belongs to $\Sigma_{k}(\alpha)$.
Putting $\alpha=0$ and $c=1$ in Corollary 1 we obtain the following result Corollary 2. If $f \in \Sigma$ and satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\frac{1}{4}
$$

then the function F defined by

$$
F(z)=\frac{1}{z^{2}} \int_{0}^{z} t f(t) d t
$$

belongs to $\Sigma_{k}(0)$.
Remark 1. Corollary 1 was obtained by Goel and Sohi [3]. In [8] there is another extention of this result.
Remark 2. Corollary 2 extends a result of Bajpai [2]
Theorem 3. If $f \in J_{n}(\alpha)$, then

$$
F(z)=\frac{n+1}{z^{n+2}} \int_{0}^{z} t^{n+1} f(t) d t
$$

belongs to $J_{n+1}(\alpha)$.
Proof. From (11) we have

$$
c D^{n} f(z)=(n+1) D^{n+1} F(z)-(n+1-c) D^{n} F(z)
$$

and

$$
c D^{n+1} f(z)=(n+2) D^{n+2} F(z)-(n+2-c) D^{n+1} F(z)
$$

Taking $c=n+1$ in the above relations we obtain

$$
\frac{(n+2)\left(D^{n+2} F(z)\right)^{\prime}-\left(D^{n+1} F(z)\right)^{\prime}}{(n+1)\left(D^{n+1} F(z)\right)^{\prime}}=\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}
$$

which reduces to

$$
\frac{(n+2)\left(D^{n+2} F(z)\right)^{\prime}}{(n+1)\left(D^{n+1} F(z)\right)^{\prime}}-\frac{1}{n+1}=\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}
$$

Thus

$$
\operatorname{Re}\left\{\frac{(n+2)\left(D^{n+2} F(z)\right)^{\prime}}{(n+1)\left(D^{n+1} F(z)\right)^{\prime}}-\frac{1}{n+1}-2\right\}=\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha}{n+1}
$$

from which it follows that

$$
\operatorname{Re}\left\{\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-2\right\}<-\frac{n+\alpha+1}{n+2} .
$$

This completes the proof of Theorem 3.
Remark 3. Taking $\alpha=0$ in the above theorems we get the results obtained by Uralegaddi and Ganigi [10].

References

[1] M. K. Aouf and H. M. Hossen, New criteria for meromorphic univalent functions of order α, Nihonkai Math. J., 5 (1994), no. 1, 1-11.
[2] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22 (1977), 295-297.
[3] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat., 17 (1981), 19-28.
[4] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[5] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[6] P. T. Mocanu and G. St. Sǎlǎgean, Integral operators and meromorphic starlike functions, Mathematica (Cluj), 32 (55) (1990), no. 2, 147-152.
[7] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[8] G. St. Sălăgean, Integral operators and meromorphic functions, Rev. Roumaine Math. Pures Appl., 33 (1988), no. 1-2, 135-140.
[9] R. Singh and S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc., 77 (1973), 336-349.
[10] B. A. Uralegaddi and M. D. Ganigi, A new criterion for meromorphic convex functions, Tamkang J. Math., 19 (1988), no. 1, 43-48.
H. E. Darwish

Department of Mathematics, Faculty of Science,
University of Mansoura,
Mansoura, Egypt.
E-mail: sinfac@mum.mans.eun.eg
M. K. Aouf

Department of Mathematics, Faculty of Science,
University of Mansoura,
Mansoura, Egypt.
E-mail: sinfac@mum.mans.eun.eg
G. S. Sǎlăgean

Babes-Bolyai University, Faculty of Mathematics and Computer Science, str. M. Kogalniceanu nr. 1, 400084 Cluj-Napoca, Romania.
E-mail:salagean@math.ubbcluj.ro

