A General Schlicht Integral Operator

Eugen Drăghici

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

Let A be the class of analytic functions f in the open complex unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$, with f(0) = 0, f'(0) = 1 and $f(z)/z \neq 0$ in U. Let define the integral operator $I : A \to A$, I(f) = F, where:

$$F(z) = \left[(\alpha + \beta + 1) \int_0^z f^{\alpha}(u) g^{\beta}(u) \right]^{1/(\alpha + \beta + 1)}, \ z \in U$$

With suitable conditions on the constants α and β and on the function $g \in A$, the author shows that F is analytic and univalent (or schlicht) in U. Additional results are also obtained, such as a new generalization of Becker's condition of univalence and improvements of some known results.

2000 Mathematics Subject Classification: 30C45.

Keywords: univalence, subordination chain.

1 Introduction

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the complex unit disc and let A be the class of analytic functions in U of the form:

$$f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \cdots$$

and with $f(z)/z \neq 0$ for all $z \in U$.

Univalence of complex functions is an important property, but, unfortunately, it is difficult and in many cases impossible to show directly that a certain complex function is univalent. For this reason, many authors found different types of sufficient conditions of univalence. One of these conditions of univalence is the well-known criterion of Ahlfors and Becker ([1] and [7]), which states that the function $f \in A$ is univalent if:

(1)
$$(1 - |z|^2) \left| \frac{zf'(z)}{f(z)} \right| \le 1$$

There are many generalizations of this criterion, such those obtained in [4], [5], [6] and [9]. In this paper, as an additional result, we will also obtain a new generalization of the above-mentioned univalence criterion. But, the principal result deals with finding sufficient conditions on the constants α and β and on the function $g \in A$ so that the function:

(2)
$$F(z) = \left[(\alpha + \beta + 1) \int_0^z f^\alpha(u) g^\beta(u) du \right]^{1/(\alpha + \beta + 1)}, \quad z \in U$$

is univalent. The result improves also former results obtained in [3], [4], [5], [6] and [7].

48

2 Preliminaries

For proving our principal result we will need the following definitions and lemma:

Definition 1. If f and g are analytic functions in U and g is univalent, then we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$ if f(0) = g(0) and $f(U) \subset g(U)$.

Definition 2. A function L(z,t), $z \in U$, $t \ge 0$ is called a Lőwner chain or a subordination chain if:

- (i) $L(\cdot, t)$ is analytic and univalent in U for all $t \ge 0$.
- (ii) $L(z, \cdot)$ is continuously differentiable in $[0, \infty)$ for all $t \ge 0$.
- (iii) $L(z,s) \prec L(z,t)$ for all real s and t with $0 \le s < t$.

Let $0 < r \le 1$. We denote by U_r the set: $U_r = \{z \in \mathbb{C} : |z| < r\}$.

Lemma 1. (see [8], [9]) Let $0 < r_0 \le 1$, $t \ge 0$ and $a_1(t) \in \mathbb{C} \setminus \{0\}$. Let:

$$L(z,t) = a_1(t)z + a_2(t)z^2 + \cdots$$

be analytic in U_{r_0} for all $t \ge 0$, locally absolutely continuous in $[0, \infty)$ locally uniform with respect to U_{r_0} . For almost all $t \ge 0$ suppose that:

(3)
$$z \frac{\partial L(z,t)}{\partial z} = p(z,t) \frac{\partial L(z,t)}{\partial t}, \quad z \in U_{r_0}$$

where p(z,t) is analytic in the unit disc U and $\operatorname{Re} p(z) > 0$ in U for all $t \ge 0.$ If:

$$\lim_{t \to \infty} |a_1(t)| = \infty$$

and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_{r_0} , then, for each $t \ge 0$, L(z,t) has an analytic and univalent extension to the whole unit disc U and is a Lőwner chain.

Lemma 1 is a variant of the well-known theorem of Pommerenke ([8]) and it's proof can be found in [9].

3 Principal result

Let B be the class of analytic functions p in U with p(0) = 1 and $p(z) \neq 0$ for all $z \in U$.

Theorem 1. Let $f, g \in A$, $p \in B$ and α, β, γ and δ complex numbers satisfying:

(4)
$$\operatorname{Re} \frac{\gamma}{\alpha + \beta + 1} > \frac{1}{2}$$

(5)
$$\operatorname{Re}(\alpha + \beta + 1) > 0$$

(6)
$$\operatorname{Re} \gamma > 0$$

(7)
$$\left|\frac{\delta+1}{\gamma p(z)}-1\right| < 1, \ z \in U$$

(8)
$$\left|\frac{\delta+1}{\alpha+\beta+1} - 1\right| < 1$$

and, for all $z \in U$:

$$(9) \qquad \left|\frac{1-\gamma}{\gamma} + \frac{1+\delta-p(z)}{\gamma p(z)}|z|^{2\gamma} + \frac{1-z^{2\gamma}}{\gamma} \left[\alpha \frac{zf'(z)}{f(z)} + \beta \frac{zg'(z)}{g(z)} + \frac{zp'(z)}{p(z)}\right]\right| \le 1$$

Then, the function F defined by (2) is analytic and univalent in U.

A General Schlicht Integral Operator

Proof. Let :

$$h(u) = \left[\frac{f(u)}{u}\right]^{\alpha} \left[\frac{g(u)}{u}\right]^{\beta}$$

where the powers are considered with their principal branches. The function h does not vanish in U because f and g are in A.Let define now the function:

$$h_1(z,t) = \frac{\alpha + \beta + 1}{(e^{-t}z)^{\alpha + \beta + 1}} \int_0^{e^{-t}z} h(u)u^{\alpha + \beta} du = 1 + b_1 z + \cdots$$

where $t \ge 0$ and $z \in U$. We consider now the power development of h:

$$h(u) = 1 + \sum_{n=1}^{\infty} c_n u^n , \ u \in U.$$

We denote:

$$\phi(w) = \frac{\alpha + \beta + 1}{w^{\alpha + \beta + 1}} \int_0^w h(u) u^{\alpha + \beta} du = 1 + \sum_{n=1}^\infty c_n \frac{\alpha + \beta + 1}{n + \alpha + \beta + 1} w^n.$$

From (5) we have that $\operatorname{Re}(\alpha + \beta + 1) > 0$ and, consequently:

 $\operatorname{Re}(\alpha + \beta + 1 > -n/2 \text{ for all } n \in \mathbb{N}.$ It follows immediately that:

$$\operatorname{Re}\frac{n}{n+2(\alpha+\beta+1)} > 0 , \ n \in \mathbb{N}$$

and hence:

$$\left|\frac{\alpha+\beta+1}{n+\alpha+\beta+1}\right| < 1.$$

Taking into account that h is analytic in U, we deduce that:

$$1 + \sum_{n=1}^{\infty} c_n \frac{\alpha + \beta + 1}{n + \alpha + \beta + 1} w^n$$

converges locally uniformly in U, and, thus, ϕ is analytic in U. Because for every $t \ge 0$ and for every $z \in U$ we have that $e^{-t}z \in U$ we deduce that $\phi(e^{-t}z) = h_1(z,t)$ is analytic in U for all $t \ge 0$. Let now:

$$m = \frac{\alpha + \beta + 1}{\delta + 1}$$

$$h_2(z,t) = p(e^{-t}z)h(e^{-t}z) , \ z \in U , \ t \ge 0$$
$$h_3(z,t) = h_1(z,t) + m(e^{2\gamma t} - 1)h_2(z,t) , \ z \in U , \ t \ge 0$$

Suppose now that $h_3(0, t_1) = 0$ for a certain positive rel number t_1 , that is $1 + m(e^{2\gamma t_1} - 1) = 0$, or:

(10)
$$e^{2\gamma t_1} = \frac{m-1}{m} = \frac{\alpha+\beta-\delta}{\alpha+\beta+1}$$

From (6) we have that $|e^{2\gamma t_1}| = e^{2t_1 \operatorname{Re} \gamma} \ge 1$ and from (8) we deduce that $\left|\frac{\alpha+\beta-\delta}{\alpha+\beta+1}\right| < 1$. It follows immediately that (10) is false and then, we have:

(11)
$$h_3(0,t) \neq 0$$
 for all $t \ge 0$

Let now suppose that for all r with $0 < r \le 1$ it exists at least one $t_r \ge 0$ so that $h_3(z, t_r)$ has at least one zero in $U_r = \{z \in \mathbb{C} : |z| < r\}$. We choose $r = 1, 1/2, 1/3, \ldots$ and form a sequence $(t_n)_{n \in \mathbb{N}}$ so that $h_3(z, t_n)$ has at least one zero in $U_{1/n}$.

If $(t_n)_{n \in \mathbb{N}}$ is bounded, we can find a subsequence $(t_{n_k})_{k \in \mathbb{N}}$ of $(t_n)_{n \in \mathbb{N}}$ that converges to $\tau_0 \ge 0$. Because h_3 is continuously with respect to t we obtain:

$$\lim_{k \to \infty} h_3(z, t_{n_k}) = h_3(z, \tau_0) \text{ for all } z \in U.$$

But in this case $h_2(\cdot, \tau_0)$ has at least one zero in every disc U_{1/n_k} . If we let now $k \to \infty$ we deduce that $h_3(0, \tau_0) = 0$, which contradicts (11).

If the sequence $(t_n)_{n \in \mathbb{N}}$ is umbounded we can consider, without loss of generality, that $\lim_{n\to\infty} t_n = \infty$. We have now:

$$h_3(z,t) = h_1(z,t) + m(e^{2\gamma t} - 1)h_2(z,t) = \phi(e^{-t}z) + m(e^{2\gamma t} - 1)h_2(z,t)$$

Because $\phi(0) = 1$ we deduce that $M = \max_{z \in \overline{U}} |\phi(e^{-t}z)| > 0$. Because p(0)h(0) = 1, there exists $r_1 \in (0, 1]$ so that $p(w)h(w) \neq 0$ in \overline{U}_{r_1} . Then, $h_2(w,t) = p(e^{-t}z)h(e^{-t}z)$ do not vanish in \overline{U}_{r_1} for every $t \ge 0$ and, thus, we have: $K = \min_{w \in \overline{U}_{r_1}} |h_2(w,t)| > 0$. From (5) we deduce that $m \neq 0$ and thus, |m| > 0. It follows immediately that:

$$\lim_{t \to \infty} \left| 1 - e^{2\gamma t} \right| = \lim_{t \to \infty} e^{2t \operatorname{Re}\gamma} \sqrt{e^{-4t \operatorname{Re}\gamma} - 2e^{-2t \operatorname{Re}\gamma} \cos 2t \operatorname{Im}\gamma + 1} = \infty$$

because $\operatorname{Re} \gamma > 0$.

Hence, for sufficiently large t we have:

(12)
$$|m| |1 - e^{2\gamma t}| |h_2(z,t)| > |m| |1 - e^{2\gamma t}| K > M + 1 > |\phi(e^{-t}z) + 1|$$

In the same time we have:

$$|h_{3}(z,t)| = |h_{1}(z,t) - m(1 - e^{2\gamma t})h_{2}(z,t)| \ge$$
$$\ge ||h_{1}(z,t)| - |m|||1 - e^{2\gamma t}||h_{2}(z,t)||$$

From (12) it follows immediately that $|h_3(z,t)| > 1$ for all $z \in U_{r_1}$ and for sufficiently large t. Thus, it exists $N \in \mathbb{N}$ so that $h_3(\cdot, t_n)$ does not vanish in U_{r_1} for all n > N. For $n \in [0, N]$ we have that $h_3(z, t_n)$ does not vanish in U_{r_2} where:

$$r_2 = \min\{r_{t_n} : h_3(z, t) \neq 0, z \in U_{r_{t_n}}, t \ge 0, n \in [0, N]\}.$$

If we let now $r_0 = \min\{r_1, r_2\}$ we have that $h_3(\cdot, t_n)$ does not vanish in U_{r_0} for every $n \in \mathbb{N}$. It follows that the supposition of the nonexistence of a positive real number $r_0 < 1$ with the property that $h_3(z, t) \neq 0$ for all $t \ge 0$ and all $z \in U_{r_0}$ is false. Hence, we can choose $r_0 \in (0, 1]$ so that $h_3(z, t) \neq 0$ for all $t \geq 0$ and all $z \in U_{r_0}$.

Let $h_4(z,t)$ be the uniform branch of $[h_3(z,t)]^{1/(\alpha+\beta+1)}$ which takes the value $[1+m(e^{2\gamma t}-1)]^{1/(\alpha+\beta+1)}$ at the origin. Let us define:

(13)
$$L(z,t) = e^{-t}zh_4(z,t)$$

which is analytic for all $t \ge 0$. If $L(z,t) = a_1(t)z + a_2(z)z^2 + \cdots$, it is clear that L(0,t) = 0 for every $t \ge 0$ and:

$$a_1(t) = e^{-t} \left[1 + m \left(e^{2\gamma t} - 1 \right) \right]^{1/(\alpha + \beta + 1)}$$

From the above written equations we can formally write:

$$L(z,t) = [L_1(z,t)]^{1/(\alpha+\beta+1)} = [(\alpha+\beta+1)\int_0^{e^{-t}z} f^{\alpha}(u)g^{\beta}(u)du + m(e^{2\gamma t}-1)e^{-t}zf^{\alpha}(e^{-t}z)g^{\beta}(e^{-t}z)p(e^{-t}z)]^{1/(\alpha+\beta+1)}$$
(14)

By simple calculations we obtain:

$$a_1(t) = (c+1)^{-\frac{1}{\alpha+\beta+1}} e^{\frac{2\gamma-\alpha-\beta-1}{\alpha+\beta+1}} \left[\alpha+\beta+1 - (\alpha+\beta-c)e^{-2\gamma t}\right]^{\frac{1}{\alpha+\beta+1}}$$

Thus, $e^t a_1(t) = h_4(0,t) = [h_3(0,t)]^{1/(\alpha+\beta+1)}$ with the choosen uniform branch. Because $h_3(\cdot,t)$ does not vanish in U_{r_0} for all $t \ge 0$, we obtain that $a_1(t) \ne 0$ for every $t \ge 0$. If we let $t \to \infty$, from (4) and (6) we easily obtain:

$$\lim_{t \to \infty} |a_1(t)| = \infty.$$

Because $h_4(\cdot, t)$ is analytic in U_{r_0} for every $t \ge 0$, we deduce that $L(z,t) = e^{-t}zh_4(z,t)$ is also analytic in U_{r_0} for all $t \ge 0$. The family $\{L(z,t)/a_1(t)\}_{t\ge 0}$ consists of analytic functions in U_{r_0} . Hence, this family is uniformly bounded

in U_{r_1} , where $0 < r_1 \leq r_0$. By applying Montels theorem we have that $\{L(z,t)/a_1(t)\}$ forms a normal family in U_{r_1} . Let denote:

(15)
$$J(z,t) = m(e^{2\gamma t} - 1) \left[\alpha \frac{e^{-t}zf'(e^{-t}z)}{f(e^{-t}z)} + \beta \frac{e^{-t}zg'(e^{-t}z)}{g(e^{-t}z)} + \frac{e^{-t}zp'(e^{-t}z)}{p(e^{-t}z)} \right] p(e^{-t}z)$$

From (14) we obtain:

$$\frac{\partial L(z,t)}{\partial t} = \frac{1}{\alpha + \beta + 1} \left[L_1(z,t) \right]^{-\frac{\alpha + \beta}{\alpha + \beta + 1}} e^{-t} z f^{\alpha}(e^{-t}z) g^{\beta}(e^{-t}z) \cdot \left[2\gamma m e^{2\gamma t} p(e^{-t}z) - m(e^{2\gamma t} - 1) p(e^{-t}z) - \alpha - \beta - 1 - J(z,t) \right]$$

It is clear that $\partial L(z,t)/\partial t$ is analytic in U_{r_2} , where $0 < r_2 \leq r_1$. Consequently, L(z,t) is locally absolutely continuous and we have also:

$$\frac{\partial L(z,t)}{\partial z} = \frac{1}{\alpha + \beta + 1} \left[L_1(z,t) \right]^{-\frac{\alpha + \beta}{\alpha + \beta + 1}} e^{-t} z f^{\alpha}(e^{-t}z) g^{\beta}(e^{-t}z) \cdot \left[m(e^{2\gamma t} - 1)p(e^{-t}z) + \alpha + \beta + 1 + J(z,t) \right]$$

Let:

$$p_1(z,t) = \frac{z\partial L(z,t)/\partial z}{\partial L(z,t)/\partial t} = \frac{m(\mathrm{e}^{2\gamma t} - 1)p(\mathrm{e}^{-t}z) + \alpha + \beta + 1 + J(z,t)}{(2\gamma - 1)m\mathrm{e}^{2\gamma t}p(\mathrm{e}^{-t}z) + mp(\mathrm{e}^{-t}z)}$$

Consider now the function:

$$w(z,t) = \frac{p_1(z,t) - 1}{p_1(z,t) + 1}$$

Further calculations show that:

$$w(z,t) = \frac{m(1-\gamma)e^{2\gamma t}p(e^{-t}z) - mp(e^{-t}z) + \alpha + \beta + 1 + J(z,t)}{\gamma m e^{2\gamma t}p(e^{-t}z)}$$

It is clear that $w(\cdot, t)$ is analytic in U_{r_2} for all $t \ge 0$. Hence, $w(\cdot, t)$ has an analytic extension $\tilde{w}(\cdot, t)$.

Let now t = 0. Taking into account that $m = (\alpha + \beta + 1)/(\delta + 1)$, we easily obtain from (15):

$$\tilde{w}(z,0) = -1 + \frac{c+1}{\gamma p(z)}$$

and from (7) it follows immediately that $|\tilde{w}(z,0)| < 1$.

Let now t > 0. We observe that $\tilde{w}(\cdot, t)$ is analytic in $\overline{U} = \{z \in \mathbb{C} : |z| \leq 1\}$ because if $t \geq 0$, for every $z \in \overline{U}$ we have that $e^{-t}z \in U$. In this case we have:

$$|\tilde{w}(z,t)| = \max_{z \in \overline{U}} |\tilde{w}(z,t)| = \max_{|z|=1} |\tilde{w}(z,t)| = |\tilde{w}(e^{i\theta},t)|$$

with $\theta \in \mathbb{R}$. Let $v = e^{-t}e^{i\theta} \in U$. After simple calculations we obtain:

$$\tilde{w}(\mathbf{e}^{\mathbf{i}\theta}, t) = \frac{1-\gamma}{\gamma} + \frac{\alpha+\beta+1-mp(v)}{\gamma mp(v)} |v|^{2\gamma} + \frac{1-|v|^{2\gamma}}{\gamma} \left[\alpha \frac{vf'(v)}{f(v)} + \beta \frac{vg'(v)}{g(v)} + \frac{vp'(v)}{p(v)} \right]$$

But:

$$\frac{\alpha + \beta + 1 - mp(v)}{\gamma mp(v)} = \frac{\delta + 1 - p(v)}{\gamma p(v)}$$

and from (9) we deduce that $|\tilde{w}(e^{i\theta}, t)| \leq 1$ and hence, $|\tilde{w}(z, t)| < 1$ in U for all $t \geq 0$. From the definition of w and \tilde{w} we deduce that $p_1(\cdot, t)$ has an analytic extension $\tilde{p}_1(\cdot, t)$ to the whole disc U for all $t \geq 0$ and $\operatorname{Re} \tilde{p}_1(z, t) > 0$ in U for all $t \geq 0$. By applying **Lemma1** we obtain that L(z, t) is a subordination chain and thus, L(z, 0) = F(z) is analytic and univalent in U and the proof of the theorem is complete.

Remark 1. We can write a variant of **Theorem 1** with $\gamma \in \mathbb{R}$. In this case, condition (8) can be replaced by:

(16)
$$1 - \frac{\delta + 1}{\alpha + \beta + 1} \notin [1, \infty)$$

However, condition (8) was necessary only for showing that $h_2(0,t) \neq 0$ for all $t \geq 0$. But if $\gamma \in \mathbb{R}$ then $h_2(0,t) = 0$ is equivalent to $e^{2\gamma t} = (m-1)/m \in \mathbb{R}$. Bat this last equality is impossible because $e^{2\gamma t} > 1$ and $(m-1)/m \notin [1,\infty)$.

4 Some particular cases

If we let in **Theorem 1** $\gamma = 1$ and p(z) = 1 for all $z \in U$, then we obtain, using **Remark 1** also, the following result:

Corollary 1. If $f, g \in A$ and α, β and δ are complex numbers satisfying:

$$(17) \qquad \qquad |\alpha + \beta| < 1$$

$$(18) |\delta| < 1$$

(19)
$$1 - (\delta + 1)/(\alpha + \beta + 1) \notin [1, \infty)$$

(20)
$$\left| c|z|^2 + (1 - |z|^2) \left[\alpha \frac{zf'(z)}{f(z)} + \beta \frac{zg'(z)}{g(z)} \right] \right| \le 1 , \ z \in U$$

then the function F defined in (2) is analytic and univalent in U.

If in Corollary 1 we let $\delta = \alpha + \beta$ we obtain Theorem 1 from [5] and if we let additionally g(z) = z for all $z \in U$ we obtain Theorem 1 from [4]. For $\beta = -1$ in this last theorem we obtain Theorem 1 from [3].

From **Theorem 1** we can obtain many other results by choosing properly the constants. An interesting example can be obtained if we let $\alpha + \beta = \omega$, p(z) = 1 and $g(z) = f(z)[f'(z)]^{1/\beta}$ for all $z \in U$ in **Theorem 1**. For the power we choose the principal branch and obtain: **Corollary 2.** If $f \in A$ and γ, δ and ω are complex numbers satisfying:

(21)
$$\operatorname{Re}\frac{2\gamma}{\omega+1} > 1$$

(22)
$$\operatorname{Re} \gamma > 0, \left| \frac{\delta + 1}{\gamma} - 1 \right| < 1, \operatorname{Re} \omega > -1$$

(23)
$$\left|\frac{\delta+1}{\omega+1}-1\right| < 1$$

and for all $z \in U$:

(24)
$$\left|\frac{1-\gamma}{\gamma} + \frac{\delta}{\gamma}|z|^{2\gamma} + \frac{\omega}{\gamma}(1-|z|^{2\gamma})\frac{zf'(z)}{f(z)} + \frac{1-|z|^{2\gamma}}{\gamma}\frac{zf'(z)}{f'(z)}\right| \le 1$$

then f is univalent in u.

If we let in **Corollary 2** $\gamma = 1$ and use also **Remark 1** we obtain a generalization of the well–known criterion of univalence of L.V.Ahlfors and J.Becker ([1], [2]), given in (1):

Corollary 3. If $f \in A$, δ and $\omega \in \mathbb{C}$ satisfie:

$$(25) |\delta| < 1$$

$$(26) \qquad \qquad |\omega| < 1$$

(27)
$$\frac{\omega - \delta}{\delta + 1} \notin [1, \infty)$$

(28)
$$\left|\delta|z|^2 + \omega(1-|z|^2)\frac{zf'(z)}{f(z)} + (1-|z|^2)\frac{zf'(z)}{f'(z)}\right| \le 1, \ z \in U$$

then f is univalent in U.

For $\delta = \omega = 0$ we obtain from **Corollary 3** the criterion of univalence of Ahlfors and Becker.

For $\delta = \omega = (1 - \alpha)/\alpha$, conditions (25) and (26) are equivalent to: Re $\alpha > 1/2$ and we obtain the result from [6].

If in Corollary 2 we let $\omega = 0$ and $\gamma = (m+1)/2$, $m \in \mathbb{R}$ we obtain the result from [7].

References

- L.V.Ahlfors, Sufficient conditions for quasiconformal extension, Princeton Annales of Math. Studies 79(1974), 23–29.
- J.Becker, Lőwnersche Differentialgleichung und quasiconform vorsetzbare schlichte Functionen, J. Reine Angew. Math. 225(1972), 23–43.
 MR. 45 8828.
- [3] D.Blezu, E.Drăghici, H.Ovesea, N.N.Pascu. Sufficient conditions for univalence of a large class of functions, Studia Univ. Babeş–Bolyai (Cluj–Romania), Math. XXXV, 4, 1990, 41–47.
- [4] E.Drăghici, A generalization of Becker's univalence criterion, Studia
 Univ. Babeş–Bolyai (Cluj–Romania), Math. XXXV, 2, 1990, 41–47.
- [5] E.Drăghici, An improvement of Becker's condition of univalence, Mathematica (Cluj–Romania), Tome 34(57) No. 2, 1992, 139–144.

- [6] S.Moldoveanu, N.N.Pascu, A sufficient condition for univalence, Seminar of Geometric Function Theory, Preprint No. 2, Braşov–Romania, 1991, 57–62.
- [7] N.N.Pascu, V.Pescar, An integral operator which preserves the univalency, Seminar of Geometric Function Theory, Preprint, Braşov– Romania, 1991, 91–98.
- [8] Ch.Pommerenke, Univalent functions, Vanderhoek & Ruprecht, Gőttingen, 1975.
- [9] S.Rusheweyh. An extension of Becker's univalence condition, Math. Annalen 220(1976), 285–290.

Department of Mathematics Faculty Of Sciences *"Lucian Blaga"* University of Sibiu Str Dr. I. Raţiu, nr. 7, et. III 550012 - Sibiu, Romania. E-mail: *eugen.draghici@ulbsibiu.ro*