On a subclass of n-close to convex functions associated with some hyperbola

Mugur Acu
Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

In this paper we define a subclass of n-close to convex functions associated with some hyperbola and we obtain some properties regarding this class.

2000 Mathematics Subject Classification: 30C45
Key words and phrases: n-close to convex functions, Libera-Pascu
integral operator, Briot-Bouquet differential subordination

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U=$ $\{z \in \mathbb{C}:|z|<1\}, A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

We recall here the definition of the well - known class of close to convex functions:

$$
C C=\left\{f \in A: \text { exists } g \in S^{*}, \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U\right\}
$$

Let consider the Libera-Pascu integral operator $L_{a}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \quad a \in \mathbb{C}, \quad \text { Re } a \geq 0 \tag{1}
\end{equation*}
$$

For $a=1$ we obtain the Libera integral operator, for $a=0$ we obtain the Alexander integral operator and in the case $a=1,2,3, \ldots$ we obtain the Bernardi integral operator.

Let D^{n} be the S'al'agean differential operator (see [6]) $D^{n}: A \rightarrow A$, $n \in \mathbb{N}$, defined as:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$

We observe that if $f \in S, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in U$ then $D^{n} f(z)=$ $z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

The purpose of this note is to define a subclass of n-close to convex functions associated with some hyperbola and to obtain some estimations for the coefficients of the series expansion and some other properties regarding this class.

2 Preliminary results

Definition 1. (see [7]) A function $f \in S$ is said to be in the class $S H(\alpha)$ if it satisfies

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{z f^{\prime}(z)}{f(z)}\right\}+2 \alpha(\sqrt{2}-1)
$$

for some $\alpha(\alpha>0)$ and for all $z \in U$.

Definition 2. (see [2]) Let $f \in S$ and $\alpha>0$. We say that the function f is in the class $S H_{n}(\alpha), n \in \mathbb{N}$, if
$\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}+2 \alpha(\sqrt{2}-1), z \in U$.
Remark 1. Geometric interpretation: If we denote with p_{α} the analytic and univalent functions with the properties $p_{\alpha}(0)=1, p_{\alpha}^{\prime}{ }_{\alpha}(0)>0$ and $p_{\alpha}(U)=\Omega(\alpha)$, where $\Omega(\alpha)=\left\{w=u+i \cdot v: v^{2}<4 \alpha u+u^{2}, u>0\right\}$ (note that $\Omega(\alpha)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin), then $f \in S H_{n}(\alpha)$ if and only if $\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec p_{\alpha}(z)$, where the symbol \prec denotes the subordination in U. We have $p_{\alpha}(z)=(1+2 \alpha) \sqrt{\frac{1+b z}{1-z}}-2 \alpha, b=b(\alpha)=\frac{1+4 \alpha-4 \alpha^{2}}{(1+2 \alpha)^{2}}$ and the branch of the square root \sqrt{w} is chosen so that Im $\sqrt{w} \geq 0$. If we consider $p_{\alpha}(z)=1+C_{1} z+\ldots$, we have $C_{1}=\frac{1+4 \alpha}{1+2 \alpha}$.
Remark 2. If we denote by $D^{n} g(z)=G(z)$, we have: $g \in S H_{n}(\alpha)$ if and only if $G \in S H(\alpha)=S H_{0}(\alpha)$.

Theorem 1. (see [2]) If $F(z) \in S H_{n}(\alpha), \alpha>0, n \in \mathbb{N}$, and $f(z)=$ $L_{a} F(z)$, where L_{a} is the integral operator defined by (1), then $f(z) \in S H_{n}(\alpha)$, $\alpha>0, n \in \mathbb{N}$.

Definition 3. (see [1]) Let $f \in A$ and $\alpha>0$. We say that the function f is in the class $C C H(\alpha)$ with respect to the function $g \in S H(\alpha)$ if

$$
\left|\frac{z f^{\prime}(z)}{g(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{z f^{\prime}(z)}{g(z)}\right\}+2 \alpha(\sqrt{2}-1), z \in U .
$$

Remark 3. Geometric interpretation: $f \in C C H(\alpha)$ with respect to the function
$g \in S H(\alpha)$ if and only if $\frac{z f^{\prime}(z)}{g(z)}$ take all values in the convex domain $\Omega(\alpha)$, where $\Omega(\alpha)$ is defined in Remark 1.

Theorem 2. (see [1]) If $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ belong to the class CCH(α), $\alpha>0$, with respect to the function $g(z) \in S H(\alpha), \alpha>0, g(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, then

$$
\left|a_{2}\right| \leq \frac{1+4 \alpha}{1+2 \alpha},\left|a_{3}\right| \leq \frac{(1+4 \alpha)\left(11+56 \alpha+72 \alpha^{2}\right)}{12(1+2 \alpha)^{3}} .
$$

The next theorem is result of the so called "admissible functions method" due to P.T. Mocanu and S.S. Miller (see [3], [4], [5]).

Theorem 3. Let q be convex in U and $j: U \rightarrow \mathbb{C}$ with $\operatorname{Re}[j(z)]>0, z \in U$. If $p \in \mathcal{H}(U)$ and satisfied $p(z)+j(z) \cdot z p^{\prime}(z) \prec q(z)$, then $p(z) \prec q(z)$.

3 Main results

Definition 4. Let $f \in A, n \in \mathbb{N}$ and $\alpha>0$. We say that the function f is in the class $C C H_{n}(\alpha)$, with respect to the function $g \in S H_{n}(\alpha)$, if

$$
\left|\frac{D^{n+1} f(z)}{D^{n} g(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{D^{n+1} f(z)}{D^{n} g(z)}\right\}+2 \alpha(\sqrt{2}-1), z \in U .
$$

Remark 4. Geometric interpretation: $f \in C C H_{n}(\alpha)$, with respect to the function $g \in S H_{n}(\alpha)$, if and only if $\frac{D^{n+1} f(z)}{D^{n} g(z)} \prec p_{\alpha}(z)$, where the symbol \prec denotes the subordination in U and p_{α} is defined in Remark 1.

Remark 5. If we denote $D^{n} f(z)=F(z)$ and $D^{n} g(z)=G(z)$ we have:
$f \in C C H_{n}(\alpha)$, with respect to the function $g \in S H_{n}(\alpha)$, if and only if $F \in C C H(\alpha)$, with respect to the function $G \in S H(\alpha)$ (see Remark 2).

Theorem 4. Let $\alpha>0, n \in \mathbb{N}$ and $f \in C C H_{n}(\alpha), f(z)=z+a_{2} z^{2}+a_{3} z^{3}+$ \ldots, with respect to the function $g \in S H_{n}(\alpha)$, then

$$
\left|a_{2}\right| \leq \frac{1}{2^{n}} \cdot \frac{1+4 \alpha}{1+2 \alpha},\left|a_{3}\right| \leq \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(11+56 \alpha+72 \alpha^{2}\right)}{12(1+2 \alpha)^{3}} .
$$

Proof. If we denote by $D^{n} f(z)=F(z), F(z)=\sum_{j=2}^{\infty} b_{j} z^{j}$, we have (using Remark 5) from the above series expansions we obtain $\left|a_{j}\right| \leq \frac{1}{j^{n}} \cdot\left|b_{j}\right|, j \geq$ 2 . Using the estimations from the Theorem 2 we obtain the needed results.

Theorem 5. Let $\alpha>0$ and $n \in \mathbb{N}$. If $F(z) \in C C H_{n}(\alpha)$, with respect to the function $G(z) \in S H_{n}(\alpha)$, and $f(z)=L_{a} F(z), g(z)=L_{a} G(z)$, where L_{a} is the integral operator defined by (1), then $f(z) \in C C H_{n}(\alpha)$, with respect to the function $g(z) \in S H_{n}(\alpha)$.

Proof. By differentiating (1) we obtain $(1+a) F(z)=a f(z)+z f^{\prime}(z)$ and $(1+a) G(z)=a g(z)+z g^{\prime}(z)$.

By means of the application of the linear operator D^{n+1} we obtain

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+1}\left(z f^{\prime}(z)\right)
$$

or

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+2} f(z)
$$

Similarly, by means of the application of the linear operator D^{n} we obtain

$$
(1+a) D^{n} G(z)=a D^{n} g(z)+D^{n+1} g(z)
$$

Thus

$$
\begin{align*}
& \frac{D^{n+1} F(z)}{D^{n} G(z)}=\frac{D^{n+2} f(z)+a D^{n+1} f(z)}{D^{n+1} g(z)+a D^{n} g(z)}= \\
= & \frac{\frac{D^{n+2} f(z)}{D^{n+1} g(z)} \cdot \frac{D^{n+1} g(z)}{D^{n} g(z)}+a \cdot \frac{D^{n+1} f(z)}{D^{n} g(z)}}{\frac{D^{n+1} g(z)}{D^{n} g(z)}+a} \tag{2}
\end{align*}
$$

With notations $\frac{D^{n+1} f(z)}{D^{n} g(z)}=p(z)$ and $\frac{D^{n+1} g(z)}{D^{n} g(z)}=h(z)$, by simple calculations, we have

$$
\frac{D^{n+2} f(z)}{D^{n+1} g(z)}=p(z)+\frac{1}{h(z)} \cdot z p^{\prime}(z)
$$

Thus from (2) we obtain

$$
\begin{array}{r}
\frac{D^{n+1} F(z)}{D^{n} G(z)}=\frac{h(z) \cdot\left(z p^{\prime}(z) \cdot \frac{1}{h(z)}+p(z)\right)+a \cdot p(z)}{h(z)+a}= \\
=p(z)+\frac{1}{h(z)+a} \cdot z p^{\prime}(z) \tag{3}
\end{array}
$$

From Remark 4 we have $\frac{D^{n+1} F(z)}{D^{n} G(z)} \prec p_{\alpha}(z)$ and thus, using (3), we obtain

$$
p(z)+\frac{1}{h(z)+a} z p^{\prime}(z) \prec p_{\alpha}(z) .
$$

We have from Remark 1 and from the hypothesis $R e \frac{1}{h(z)+a}>0, z \in U$.
In this conditions from Theorem 3 we obtain $p(z) \prec p_{\alpha}(z)$ or $\frac{D^{n+1} f(z)}{D^{n} g(z)} \prec p_{\alpha}(z)$. This means that $f(z)=L_{a} F(z) \in C C H_{n}(\alpha)$, with respect to the function $g(z)=L_{a} G(z) \in S H_{n}(\alpha)$ (see Theorem 1).

Theorem 6. Let $a \in \mathbb{C}$, Re $a \geq 0, \alpha>0$, and $n \in \mathbb{N}$. If $F(z) \in C C H_{n}(\alpha)$, with respect to the function $G(z) \in S H_{n}(\alpha), F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, and $g(z)=L_{a} G(z), f(z)=L_{a} F(z), f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L_{a} is the integral operator defined by (1), then
$\left|b_{2}\right| \leq\left|\frac{a+1}{a+2}\right| \cdot \frac{1}{2^{n}} \cdot \frac{1+4 \alpha}{1+2 \alpha},\left|b_{3}\right| \leq\left|\frac{a+1}{a+3}\right| \cdot \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(11+56 \alpha+72 \alpha^{2}\right)}{12(1+2 \alpha)^{3}}$.
Proof. From $f(z)=L_{a} F(z)$ we have $(1+a) F(z)=a f(z)+z f^{\prime}(z)$. Using the above series expansions we obtain

$$
(1+a) z+\sum_{j=2}^{\infty}(1+a) a_{j} z^{j}=a z+\sum_{j=2}^{\infty} a b_{j} z^{j}+z+\sum_{j=2}^{\infty} j b_{j} z^{j}
$$

and thus $b_{j}(a+j)=(1+a) a_{j}, j \geq 2$. From the above we have $\left|b_{j}\right| \leq\left|\frac{a+1}{a+j}\right| \cdot\left|a_{j}\right|, j \geq 2$. Using the estimations from Theorem 4 we obtain the needed results.

For $a=1$, when the integral operator L_{a} become the Libera integral operator, we obtain from the above theorem:

Corollary 1. Let $\alpha>0$ and $n \in \mathbb{N}$. If $F(z) \in C C H_{n}(\alpha)$, with respect to the function $G(z) \in S H_{n}(\alpha), F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, and $g(z)=L(G(z))$, $f(z)=L(F(z)), f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L is Libera integral operator defined by $L(H(z))=\frac{2}{z} \int_{0}^{z} H(t) d t$, then

$$
\left|b_{2}\right| \leq \frac{1}{2^{n-1}} \cdot \frac{1+4 \alpha}{3+6 \alpha},\left|b_{3}\right| \leq \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(11+56 \alpha+72 \alpha^{2}\right)}{24(1+2 \alpha)^{3}}
$$

Theorem 7. Let $n \in \mathbb{N}$ and $\alpha>0$. If $f \in C C H_{n+1}(\alpha)$ then $f \in C C H_{n}(\alpha)$.
Proof. With notations $\frac{D^{n+1} f(z)}{D^{n} g(z)}=p(z)$ and $\frac{D^{n+1} g(z)}{D^{n} g(z)}=h(z)$ we have (see the proof of the Theorem 5):

$$
\frac{D^{n+2} f(z)}{D^{n+1} g(z)}=p(z)+\frac{1}{h(z)} \cdot z p^{\prime}(z)
$$

From $f \in C C H_{n+1}(\alpha)$ we obtain (see Remark 4) $p(z)+\frac{1}{h(z)} \cdot z p^{\prime}(z) \prec$ $p_{\alpha}(z)$. Using the Remark 1 we have $\operatorname{Re} \frac{1}{h(z)}>0, z \in U$, and from Theorem 3 we obtain $p(z) \prec p_{\alpha}(z)$ or $f \in C C H_{n}(\alpha)$.

Remark 6. From the above theorem we obtain $\mathrm{CCH}_{n}(\alpha) \subset C C H_{0}(\alpha)=$ $C C H(\alpha)$ for all $n \in \mathbb{N}$.

References

[1] M. Acu, Close to convex functions associated with some hyperbola, (to appear).
[2] M. Acu, On a subclass of n-starlike functions associated with some hyperbola, (to appear).
[3] S. S. Miller and P. T. Mocanu, Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157-171.
[4] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-308.
[5] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Mich. Math. 32(1985), 185-195.
[6] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
[7] J. Stankiewicz, A. Wisniowska, Starlike functions associated with some hyperbola, Folia Scientiarum Universitatis Tehnicae Resoviensis 147, Matematyka 19(1996), 117-126.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: acu_mugur@yahoo.com

