On a subclass of n-close to convex functions associated with some hyperbola

Mugur Acu

Dedicated to Professor Dumitru Acu on his 60th anniversary

Abstract

In this paper we define a subclass of n-close to convex functions associated with some hyperbola and we obtain some properties regarding this class.

2000 Mathematics Subject Classification: 30C45

Key words and phrases: *n*-close to convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}, A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}$ and $S = \{f \in A : f \text{ is univalent in } U\}.$

We recall here the definition of the well - known class of close to convex functions:

$$CC = \left\{ f \in A : \text{ exists } g \in S^*, Re \frac{zf'(z)}{g(z)} > 0, z \in U \right\}.$$

Let consider the Libera-Pascu integral operator $L_a: A \to A$ defined as:

(1)
$$f(z) = L_a F(z) = \frac{1+a}{z^a} \int_0^z F(t) \cdot t^{a-1} dt$$
, $a \in \mathbb{C}$, $Re \ a \ge 0$.

For a=1 we obtain the Libera integral operator, for a=0 we obtain the Alexander integral operator and in the case a=1,2,3,... we obtain the Bernardi integral operator.

Let D^n be the S'al'agean differential operator (see [6]) $D^n: A \to A$, $n \in \mathbb{N}$, defined as:

$$D^{0}f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z)$$

$$D^{n}f(z) = D(D^{n-1}f(z))$$

We observe that if $f \in S$, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, $z \in U$ then $D^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j$.

The purpose of this note is to define a subclass of n-close to convex functions associated with some hyperbola and to obtain some estimations for the coefficients of the series expansion and some other properties regarding this class.

2 Preliminary results

Definition 1. (see [7]) A function $f \in S$ is said to be in the class $SH(\alpha)$ if it satisfies

$$\left| \frac{zf'(z)}{f(z)} - 2\alpha \left(\sqrt{2} - 1 \right) \right| < Re \left\{ \sqrt{2} \frac{zf'(z)}{f(z)} \right\} + 2\alpha \left(\sqrt{2} - 1 \right),$$

for some α ($\alpha > 0$) and for all $z \in U$.

Definition 2. (see [2]) Let $f \in S$ and $\alpha > 0$. We say that the function f is in the class $SH_n(\alpha)$, $n \in \mathbb{N}$, if

$$\left| \frac{D^{n+1} f(z)}{D^n f(z)} - 2\alpha \left(\sqrt{2} - 1 \right) \right| < Re \left\{ \sqrt{2} \frac{D^{n+1} f(z)}{D^n f(z)} \right\} + 2\alpha \left(\sqrt{2} - 1 \right), \ z \in U.$$

Remark 1. Geometric interpretation: If we denote with p_{α} the analytic and univalent functions with the properties $p_{\alpha}(0) = 1$, $p'_{\alpha}(0) > 0$ and $p_{\alpha}(U) = \Omega(\alpha)$, where $\Omega(\alpha) = \{w = u + i \cdot v : v^2 < 4\alpha u + u^2, u > 0\}$ (note that $\Omega(\alpha)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin), then $f \in SH_n(\alpha)$ if and only if $\frac{D^{n+1}f(z)}{D^nf(z)} \prec p_{\alpha}(z)$, where the symbol \prec denotes the subordina-

tion in U. We have $p_{\alpha}(z) = (1+2\alpha)\sqrt{\frac{1+bz}{1-z}} - 2\alpha$, $b = b(\alpha) = \frac{1+4\alpha-4\alpha^2}{(1+2\alpha)^2}$ and the branch of the square root \sqrt{w} is chosen so that $Im \sqrt{w} \geq 0$. If we consider $p_{\alpha}(z) = 1 + C_1 z + \ldots$, we have $C_1 = \frac{1+4\alpha}{1+2\alpha}$.

Remark 2. If we denote by $D^ng(z) = G(z)$, we have: $g \in SH_n(\alpha)$ if and only if $G \in SH(\alpha) = SH_0(\alpha)$.

Theorem 1. (see [2]) If $F(z) \in SH_n(\alpha)$, $\alpha > 0$, $n \in \mathbb{N}$, and $f(z) = L_aF(z)$, where L_a is the integral operator defined by (1), then $f(z) \in SH_n(\alpha)$, $\alpha > 0$, $n \in \mathbb{N}$.

Definition 3. (see [1]) Let $f \in A$ and $\alpha > 0$. We say that the function f is in the class $CCH(\alpha)$ with respect to the function $g \in SH(\alpha)$ if

$$\left| \frac{zf'(z)}{g(z)} - 2\alpha \left(\sqrt{2} - 1 \right) \right| < Re \left\{ \sqrt{2} \frac{zf'(z)}{g(z)} \right\} + 2\alpha \left(\sqrt{2} - 1 \right), \ z \in U.$$

Remark 3. Geometric interpretation: $f \in CCH(\alpha)$ with respect to the function

 $g \in SH(\alpha)$ if and only if $\frac{zf'(z)}{g(z)}$ take all values in the convex domain $\Omega(\alpha)$, where $\Omega(\alpha)$ is defined in Remark 1.

Theorem 2. (see [1]) If $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$ belong to the class $CCH(\alpha)$,

 $\alpha > 0$, with respect to the function $g(z) \in SH(\alpha)$, $\alpha > 0$, $g(z) = z + \sum_{j=2}^{\infty} b_j z^j$, then

$$|a_2| \le \frac{1+4\alpha}{1+2\alpha}, |a_3| \le \frac{(1+4\alpha)(11+56\alpha+72\alpha^2)}{12(1+2\alpha)^3}.$$

The next theorem is result of the so called "admissible functions method" due to P.T. Mocanu and S.S. Miller (see [3], [4], [5]).

Theorem 3. Let q be convex in U and $j: U \to \mathbb{C}$ with Re[j(z)] > 0, $z \in U$. If $p \in \mathcal{H}(U)$ and satisfied $p(z) + j(z) \cdot zp'(z) \prec q(z)$, then $p(z) \prec q(z)$.

3 Main results

Definition 4. Let $f \in A$, $n \in \mathbb{N}$ and $\alpha > 0$. We say that the function f is in the class $CCH_n(\alpha)$, with respect to the function $g \in SH_n(\alpha)$, if

$$\left| \frac{D^{n+1} f(z)}{D^n q(z)} - 2\alpha \left(\sqrt{2} - 1 \right) \right| < Re \left\{ \sqrt{2} \frac{D^{n+1} f(z)}{D^n q(z)} \right\} + 2\alpha \left(\sqrt{2} - 1 \right) , z \in U.$$

Remark 4. Geometric interpretation: $f \in CCH_n(\alpha)$, with respect to the function $g \in SH_n(\alpha)$, if and only if $\frac{D^{n+1}f(z)}{D^ng(z)} \prec p_{\alpha}(z)$, where the symbol \prec denotes the subordination in U and p_{α} is defined in Remark 1.

Remark 5. If we denote $D^n f(z) = F(z)$ and $D^n g(z) = G(z)$ we have: $f \in CCH_n(\alpha)$, with respect to the function $g \in SH_n(\alpha)$, if and only if $F \in CCH(\alpha)$, with respect to the function $G \in SH(\alpha)$ (see Remark 2).

Theorem 4. Let $\alpha > 0$, $n \in \mathbb{N}$ and $f \in CCH_n(\alpha)$, $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$, with respect to the function $g \in SH_n(\alpha)$, then

$$|a_2| \le \frac{1}{2^n} \cdot \frac{1+4\alpha}{1+2\alpha} , |a_3| \le \frac{1}{3^n} \cdot \frac{(1+4\alpha)(11+56\alpha+72\alpha^2)}{12(1+2\alpha)^3}.$$

Proof. If we denote by $D^n f(z) = F(z)$, $F(z) = \sum_{j=2}^{\infty} b_j z^j$, we have (using

Remark 5) from the above series expansions we obtain $|a_j| \leq \frac{1}{j^n} \cdot |b_j|$, $j \geq 2$. Using the estimations from the Theorem 2 we obtain the needed results.

Theorem 5. Let $\alpha > 0$ and $n \in \mathbb{N}$. If $F(z) \in CCH_n(\alpha)$, with respect to the function $G(z) \in SH_n(\alpha)$, and $f(z) = L_aF(z)$, $g(z) = L_aG(z)$, where L_a is the integral operator defined by (1), then $f(z) \in CCH_n(\alpha)$, with respect to the function $g(z) \in SH_n(\alpha)$.

Proof. By differentiating (1) we obtain (1+a)F(z) = af(z) + zf'(z) and (1+a)G(z) = ag(z) + zg'(z).

By means of the application of the linear operator D^{n+1} we obtain

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+1}(zf'(z))$$

or

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+2}f(z)$$

Similarly, by means of the application of the linear operator \mathbb{D}^n we obtain

$$(1+a)D^nG(z) = aD^ng(z) + D^{n+1}g(z)$$

Thus

(2)
$$\frac{D^{n+1}F(z)}{D^{n}G(z)} = \frac{D^{n+2}f(z) + aD^{n+1}f(z)}{D^{n+1}g(z) + aD^{n}g(z)} = \frac{D^{n+2}f(z)}{D^{n+1}g(z)} \cdot \frac{D^{n+1}g(z)}{D^{n}g(z)} + a \cdot \frac{D^{n+1}f(z)}{D^{n}g(z)} = \frac{D^{n+1}g(z)}{D^{n}g(z)} + a$$

With notations $\frac{D^{n+1}f(z)}{D^ng(z)} = p(z)$ and $\frac{D^{n+1}g(z)}{D^ng(z)} = h(z)$, by simple calculations, we have

$$\frac{D^{n+2}f(z)}{D^{n+1}g(z)} = p(z) + \frac{1}{h(z)} \cdot zp'(z)$$

Thus from (2) we obtain

(3)
$$\frac{D^{n+1}F(z)}{D^nG(z)} = \frac{h(z) \cdot \left(zp'(z) \cdot \frac{1}{h(z)} + p(z)\right) + a \cdot p(z)}{h(z) + a} = p(z) + \frac{1}{h(z) + a} \cdot zp'(z)$$

From Remark 4 we have $\frac{D^{n+1}F(z)}{D^nG(z)} \prec p_{\alpha}(z)$ and thus, using (3), we obtain

$$p(z) + \frac{1}{h(z) + a} z p'(z) \prec p_{\alpha}(z).$$

We have from Remark 1 and from the hypothesis $Re\frac{1}{h(z)+a} > 0$, $z \in U$. In this conditions from Theorem 3 we obtain $p(z) \prec p_{\alpha}(z)$ or $\frac{D^{n+1}f(z)}{D^ng(z)} \prec p_{\alpha}(z)$. This means that $f(z) = L_aF(z) \in CCH_n(\alpha)$, with respect to the function $g(z) = L_aG(z) \in SH_n(\alpha)$ (see Theorem 1).

Theorem 6. Let $a \in \mathbb{C}$, $Re \ a \geq 0$, $\alpha > 0$, and $n \in \mathbb{N}$. If $F(z) \in CCH_n(\alpha)$, with respect to the function $G(z) \in SH_n(\alpha)$, $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$, and $g(z) = L_a G(z)$, $f(z) = L_a F(z)$, $f(z) = z + \sum_{j=2}^{\infty} b_j z^j$, where L_a is the integral operator defined by (1), then

$$|b_2| \le \left| \frac{a+1}{a+2} \right| \cdot \frac{1}{2^n} \cdot \frac{1+4\alpha}{1+2\alpha} , |b_3| \le \left| \frac{a+1}{a+3} \right| \cdot \frac{1}{3^n} \cdot \frac{(1+4\alpha)(11+56\alpha+72\alpha^2)}{12(1+2\alpha)^3} .$$

Proof. From $f(z) = L_a F(z)$ we have (1+a)F(z) = af(z) + zf'(z). Using the above series expansions we obtain

$$(1+a)z + \sum_{j=2}^{\infty} (1+a)a_j z^j = az + \sum_{j=2}^{\infty} ab_j z^j + z + \sum_{j=2}^{\infty} jb_j z^j$$

and thus $b_j(a+j)=(1+a)a_j$, $j\geq 2$. From the above we have $|b_j|\leq \left|\frac{a+1}{a+j}\right|\cdot |a_j|$, $j\geq 2$. Using the estimations from Theorem 4 we obtain the needed results.

For a = 1, when the integral operator L_a become the Libera integral operator, we obtain from the above theorem:

Corollary 1. Let $\alpha > 0$ and $n \in \mathbb{N}$. If $F(z) \in CCH_n(\alpha)$, with respect to the function $G(z) \in SH_n(\alpha)$, $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$, and g(z) = L(G(z)),

f(z) = L(F(z)), $f(z) = z + \sum_{j=2}^{\infty} b_j z^j$, where L is Libera integral operator defined by $L(H(z)) = \frac{2}{z} \int_0^z H(t)dt$, then

$$|b_2| \le \frac{1}{2^{n-1}} \cdot \frac{1+4\alpha}{3+6\alpha} , |b_3| \le \frac{1}{3^n} \cdot \frac{(1+4\alpha)(11+56\alpha+72\alpha^2)}{24(1+2\alpha)^3} .$$

Theorem 7. Let $n \in \mathbb{N}$ and $\alpha > 0$. If $f \in CCH_{n+1}(\alpha)$ then $f \in CCH_n(\alpha)$.

Proof. With notations $\frac{D^{n+1}f(z)}{D^ng(z)} = p(z)$ and $\frac{D^{n+1}g(z)}{D^ng(z)} = h(z)$ we have (see the proof of the Theorem 5):

$$\frac{D^{n+2}f(z)}{D^{n+1}g(z)} = p(z) + \frac{1}{h(z)} \cdot zp'(z).$$

From $f \in CCH_{n+1}(\alpha)$ we obtain (see Remark 4) $p(z) + \frac{1}{h(z)} \cdot zp'(z) \prec p_{\alpha}(z)$. Using the Remark 1 we have $Re\frac{1}{h(z)} > 0$, $z \in U$, and from Theorem 3 we obtain $p(z) \prec p_{\alpha}(z)$ or $f \in CCH_n(\alpha)$.

Remark 6. From the above theorem we obtain $CCH_n(\alpha) \subset CCH_0(\alpha) = CCH(\alpha)$ for all $n \in \mathbb{N}$.

30 Mugur Acu

References

[1] M. Acu, Close to convex functions associated with some hyperbola, (to appear).

- [2] M. Acu, On a subclass of n-starlike functions associated with some hyperbola, (to appear).
- [3] S. S. Miller and P. T. Mocanu, Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157 171.
- [4] S. S. Miller and P. T. Mocanu, *Univalent solution of Briot-Bouquet differential equations*, J. Differential Equations 56 (1985), 297 308.
- [5] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Mich. Math. 32(1985), 185 195.
- [6] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
- [7] J. Stankiewicz, A. Wisniowska, Starlike functions associated with some hyperbola, Folia Scientiarum Universitatis Tehnicae Resoviensis 147, Matematyka 19(1996), 117-126.

"Lucian Blaga" University of Sibiu Department of Mathematics Str. Dr. I. Rațiu, No. 5-7 550012 - Sibiu, Romania

E-mail address: acu_mugur@yahoo.com