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Abstract

A group G is said to be divisible if for every x ∈ G and every

n ∈ N, x = yn for some y ∈ G where N is the set of all posi-

tive integers. More generally, we call a hypergroup (A, ◦) a divisible

hypergroup if for every x ∈ A and every n ∈ N, x ∈ (y, ◦)n for

some y ∈ A where (y, ◦)n denotes y ◦ y ◦ .... ◦ y (n copies). If G

is any group and H < G, let G/H and G|H be respectively the

sets {xH|x ∈ G} and {HxH|x ∈ G}. It is known that (G/H, ◦)
and (G|H, �) are hypergroups where xH ◦ yH = {tH|t ∈ xHy} and

HxH �HyH = {HtH|t ∈ xHy}. These hypergroups will be shown

to be divisible if the group G is divisible. Let Un(R) be the group un-

der multiplication of all nonsingular upper triangular n×n matrices

over R. Then the group Un(R) is not divisible. However, it is known

that the group U+
n (R) = {A ∈ Un(R)|Aii > 0 for all i ∈ {1, ..., n}} is

divisible. Based on this result, we show that there are infinitely many

subgroups H of Un(R) such that the hypergroups (Un(R)/H, ◦) and

(Un(R)|H, �) are divisible.
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1 Introduction

The cardinality of a set X will be denoted by |X|. Let N,Z,Q and R denote

respectively the set of positive integers, the set of integers, the set of rational

numbers and the set of real numbers. For any subfield F of the field R, let

F ∗ = F\{0} and F+ = {x ∈ F |x > 0}.
We call a group G a divisible group if for every x ∈ G and every n ∈ N,

x = yn for some y ∈ G. The the additive group (Q,+) is divisible while

the multiplicative group (Q+, )̇ is not divisible. The group (R+, )̇ is clearly

divisible. Divisible abelian groups have been characterized in terms of Z-

injectively. This can be seen in [2], page 195. It is also known that every

nonzero finite abelian group is not divisible ([2], page 198). In fact, a more

general result is obatined from [5] as follows:

Proposition 1.([5]) If G is a nontrivial finite group, then G is not divis-

ible.

Let Mn(R) be the semigroup of all n× n matrices over R under matrix

multiplication. Then the unit group of the semigroup Mn(R) is

Gn(R) = {A ∈Mn(R)| detA 6= 0}

For each A ∈Mn(R), the entry of A in the ith row and the jth column will

be denoted by Ai,j. Next, let

Un(R) = {A ∈ Gn(R)| A is upper triangular}.

Then Un(R) is a subgroup of Gn(R) ([3], page 410). For convenience, let

U+
n (R) = {A ∈ Gn(R)|Aii > 0 for all i ∈ {1, ..., n}}.

If A,B ∈ U+
n (R), then for every i ∈ {1, ..., n}, (AB)ii = AiiBii > 0

and (A−1)ii = 1
Aii

> 0, so U+
n (R) is a subgroup of Un(R) and Gn(R). The
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groups Gn(R) and Un(R) are clearly not divisible. An interesting result

for the group U+
n (R) was given by N. Triphop and A. Wasanawichit [4] as

follows:

Theorem 1. ([4]) For every n ∈ N, U+
n (R) is a divisible group.

The notation of divisibility is defined more extensively in this paper.

Divisible hypergroups will be defined. Let us recall some hyperstructures

which will be used. A hyperoperation on a nonempty set A is a mapping ◦ :

A×A→ P ∗(A) where P (A) is the power set of A and P ∗(A) = P (A)\{∅},
and (A, ◦) is called a hypergroupoid. If X and Y are nonempty subsets of

A, let

X ◦ Y =
⋃
x∈X
y∈Y

(x ◦ y).

A semihypergroups is a hypergroupoid (A, ◦) such that x ◦ (y ◦ z) =

(x◦y)◦z for all x, y, z ∈ A. A semihypergroup (A, ◦) with A◦x = x◦A = A

for all x ∈ A is called a hypergroup. A hypergroup (A, ◦) is said to be

divisible if for any x ∈ A and every n ∈ N, x ∈ (y, ◦)n for some y ∈ A where

(y, ◦)n denotes the set y◦y◦ ...◦y (n copies). Then a total hypergroup, that

is, a hypergroup (A, ◦) with x ◦ y = A for all x, y ∈ A, is clearly divisible.

Let G be a group and H a subgroup of G. It is well-known that the

relation ∼ defined on G by a ∼ b⇔ a = bx for some x ∈ H is an equivalence

relation on G and the ∼-class of G containing a ∈ G is aH and aH =

H ⇔ a ∈ H. Similarly, it is easy to verify the relation ≈ defined on G by

a ≈ b⇔ a = xby for some x, y ∈ H is an equivalence relation on G and the

≈-class of G containing a ∈ G is HaH. Moreover, HaH = H ⇔ a ∈ H.

The notation G/H denotes the set of all left cosets of H in G, that is,

G/H = {xH| x ∈ G}.



18 Sajee Pianskool, Amorn Wasanawichit and Yupaporn Kemprasit

Define the hyperoperation ◦ on G/H by

xH ◦ yH = {tH| t ∈ xHy} for all x, y ∈ G.

Also, let G|H and � the hyperoperation defined on G|H as follows:

G|H = {HxH| x ∈ G},

HxH �HyH = {HtH| t ∈ xHy} for all x, y ∈ G.

Then (G/H, ◦) and (G|H, �) are both hypergroups ([1], page 11). Notice

that if H is normal in G, then (G/H, ◦) = (G|H, �) which is the quotient

group of G by H. Moreover, if H1 and H2 are subgroups of G such that

H1 6= H2, then G/H1 6= G/H2 and G|H1 6= G|H2.

Our main purpose is to show that there are infinite many subgroups

H of Un(R) such that the hypergroups (Un(R)/H, ◦) and (Un(R)|H, �) are

divisible. Theorem 1 is helpful for our work.

2 Basic Properties

Throughout this section, let G be any group, H a subgroup of G. Also,

(G/H, ◦) and (G|H, �) are hypergroups defined previously.

Lemma 1. For x ∈ G and n ∈ N\{1},

(xH, ◦)n = {tH|t ∈ (xH)n−1x}

and

(HxH, �)n = {HtH|t ∈ (xH)n−1x}

Hence xnH ∈ (xH, ◦)n and HxnH ∈ (HxH, �)n for all n ∈ N. In particular,

(H, ◦)n = {H} = (H, �)n.
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Proof. This is clear for n = 2. If k ≥ 2 is such that (xH, ◦)k = {tH|t ∈
(xH)k−1x} and (HxH, �)k = {HtH|t ∈ (xH)k−1x}. Hence

(xH, ◦)k+1 = xH ◦ {tH|t ∈ (xH)k−1x} =

= {rH|r ∈ xHt for some t ∈ (xH)k−1x} = {rH|r ∈ xH(xH)k−1x} =

= {tH|t ∈ (xH)kx},
and

(HxH, �)k+1 = HxH � {HtH|t ∈ (xH)k−1x} =

= {HrH|r ∈ xHt for some t ∈ (xH)k−1x} =

= {HrH|r ∈ xH(xH)k−1x} = {HtH|t ∈ (xH)kx}.
If x, y ∈ G and n ∈ N are such that x = yn, then xH = ynH ∈ (yH, ◦)n

and HxH = HynH ∈ (HyH, �)n by Lemma 1. Hence we have:

Proposition 2. If G is a divisible group, then both (G/H, ◦) and (G|H, �)
are divisible hypergroups.

For any group G if H = G, then |G/H| = 1 = |G|H|, so (G/H, ◦) and

(G|H, �) are divisible hypergroups. Hence the converse of Proposition 2 is

not generally true. A nontrivial example is as follows:

Example 1 By Proposition 1, S3 is not a divisible group. Let H be the

subgroup of S3 generated by the cycle (1 2), that is, H = {(1), (1 2)}. Since

|S3/H| = 6
2 = 3 and (1 3)−1(2 3) = (1 3)(2 3) = (1 2 3) 6∈ H, it follows

that H 6∈ (1 3)H 6∈ (2 3)H 6∈ H. Thus

S3/H = {H, (1 3)H, (2 3)H}.

Since (1 3) 6∈ H, (2 3) 6∈ H,

(1 3) ∈ H(1 3)H = (1 3)H ∪ (1 2)(1 3)H =
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= (1 3)H ∪ (1 2 3)H = (1 3)H ∪ (2 3)H since (1 2 3) = (2 3)(1 2)

and

S3 = H ∪ (1 3)H ∪ (2 3)H,

it follows that

S3|H = {H,H(1 3)H} and H(2 3)H = H(1 3)H.

We know that (1 3) = (2 3)(1 2)(2 3) ∈ (2 3)H(2 3) and (1 3) = (1 3)3.

By Lemma 2,

(1 3)H ∈ ((2 3)H, ◦)2, (1 3)H = (1 3)3H ∈ ((1 3)H, ◦)3,

H(1 3)H ∈ (H(2 3)H, �)2 = (H(1 3)H, �)2,

H(1 3)H = H(1 3)3H ∈ (H(1 3)H, �)3.

Next, let n ∈ N be such that n ≥ 3. If n is odd, then (1 3) = (1 3)n, so by

Lemma 2

(1 3)H = (1 3)nH ∈ ((1 3)H, ◦)n

and

H(1 3)H = H(1 3)H = H(1 3)nH ∈ (H(1 3)H, �)n.
If n is even, then

(1 3) = (2 3)n−2(2 3)(1 2)(2 3) ∈ ((2 3)H)n−2(2 3)H(2 3) = ((2 3)H, ◦)n−1(2 3),

thus by Lemma 2.

(1 3)H ∈ ((2 3)H, ◦)n

and

H(1 3)H ∈ (H(2 3)H, �)n = (H(1 3)H, �)n.
This shows that for every n ∈ N, (1 3)H ∈ ((1 3)H, ◦)n or (1 3)H ∈

((2 3)H, ◦)n and H(1 3)H ∈ (H(1 3)H, �)n. We can show similarly that for

every n ∈ N, (2 3)H ∈ ((2 3)H, ◦)n or (2 3)H ∈ ((1 3)H, ◦)n.
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Hence we have that S3 is not a divisible group and H 6= S3, but (S3/H, ◦)
and (S3|H, �) are divisible hypergroups.

3 The Hypergroups (Un(R)/H, ◦) and

(Un(R)|H, �)
For each prime p,Q(

√
p) is a subfield of R and if p1 and p2 are distinct

primes, then Q(
√
p1) 6= Q(

√
p2). Hence there are infinitely many subfields

of R. For each subfield F of R, let

HF = {A ∈ Un(R)|Aii ∈ F ∗ for all i ∈ {1, ..., n}}.

Clearly, for distinct F1 and F2 of R, HF1 6= HF2 .

Lemma 2. For every subfield F of R, HF is a subgroup of the group Un(R).

Proof. Since for A,B ∈ HF , (AB)ii = AiiBii ∈ F ∗ and (A−1)ii = 1
Aii
∈ F ∗

for all i ∈ {1, ..., n}, it follows that HF is a subgroup of Un(R).

Theorem 2. If F is a subfield of R, then (Un(R)/HF , ◦) and (Un(R)|HF , �)
are both divisible hypergroups.

Proof. Let A ∈ Un(R) and m ∈ N. Define the diagonal matrix B ∈ Un(R)

by Bii = 1 if Aii = −1 if Aii < 0. Then B is clearly an element of HF

and AB = Cm. Thus A = CmB−1 and hence AHF = CmB−1HF = CmHF

and HFAHF = HFC
mB−1HF = HFC

mHF . But CmHF ∈ (CHF , ◦)m
and HFC

mHF ∈ (HFCHF , �)m by Lemma 1, so AHF ∈ (CHF , ◦)m and

HFAHF ∈ (HFCHF , �)m.

Hence the theoem is proved.

Remark 1. If F1 and F2 are distinct subfields of R, then HF1 6= HF2 which

implies that Un(R)/HF1 6= Un(R)/HF2 and Un(R)|HF1 6= Un(R)|HF2.
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