# Certain Divisible Hypergroups 

## Sajee Pianskool, Amorn Wasanawichit and Yupaporn Kemprasit

Dedicated to Professor Dumitru Acu on his 60th anniversary


#### Abstract

A group $G$ is said to be divisible if for every $x \in G$ and every $n \in \mathbb{N}, x=y^{n}$ for some $y \in G$ where $\mathbb{N}$ is the set of all positive integers. More generally, we call a hypergroup $(A, \circ)$ a divisible hypergroup if for every $x \in A$ and every $n \in \mathbb{N}, x \in(y, \circ)^{n}$ for some $y \in A$ where $(y, \circ)^{n}$ denotes $y \circ y \circ \ldots . \circ y$ ( $n$ copies). If $G$ is any group and $H<G$, let $G / H$ and $G \mid H$ be respectively the sets $\{x H \mid x \in G\}$ and $\{H x H \mid x \in G\}$. It is known that $(G / H, \circ)$ and $(G \mid H, \diamond)$ are hypergroups where $x H \circ y H=\{t H \mid t \in x H y\}$ and $H x H \diamond H y H=\{H t H \mid t \in x H y\}$. These hypergroups will be shown to be divisible if the group $G$ is divisible. Let $U_{n}(\mathbb{R})$ be the group under multiplication of all nonsingular upper triangular $n \times n$ matrices over $\mathbb{R}$. Then the group $U_{n}(\mathbb{R})$ is not divisible. However, it is known that the group $U_{n}^{+}(\mathbb{R})=\left\{A \in U_{n}(\mathbb{R}) \mid A_{i i}>0\right.$ for all $\left.i \in\{1, \ldots, n\}\right\}$ is divisible. Based on this result, we show that there are infinitely many subgroups $H$ of $U_{n}(\mathbb{R})$ such that the hypergroups $\left(U_{n}(\mathbb{R}) / H, \circ\right)$ and $\left(U_{n}(\mathbb{R}) \mid H, \diamond\right)$ are divisible.


2000 Mathematics Subject Classification: 20N20.
Keywords: Divisible groups, divisible hypergroups.

## 1 Introduction

The cardinality of a set $X$ will be denoted by $|X|$. Let $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and $\mathbb{R}$ denote respectively the set of positive integers, the set of integers, the set of rational numbers and the set of real numbers. For any subfield $F$ of the field $\mathbb{R}$, let $F^{*}=F \backslash\{0\}$ and $F^{+}=\{x \in F \mid x>0\}$.

We call a group $G$ a divisible group if for every $x \in G$ and every $n \in \mathbb{N}$, $x=y^{n}$ for some $y \in G$. The the additive group $(\mathbb{Q},+)$ is divisible while the multiplicative group $\left(\mathbb{Q}^{+}, \dot{)}\right.$ is not divisible. The group $\left(\mathbb{R}^{+}, \dot{)}\right.$ is clearly divisible. Divisible abelian groups have been characterized in terms of $\mathbb{Z}$ injectively. This can be seen in [2], page 195. It is also known that every nonzero finite abelian group is not divisible ([2], page 198). In fact, a more general result is obatined from [5] as follows:

Proposition 1.([5]) If $G$ is a nontrivial finite group, then $G$ is not divisible.

Let $M_{n}(\mathbb{R})$ be the semigroup of all $n \times n$ matrices over $\mathbb{R}$ under matrix multiplication. Then the unit group of the semigroup $M_{n}(\mathbb{R})$ is

$$
G_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det} A \neq 0\right\}
$$

For each $A \in M_{n}(\mathbb{R})$, the entry of $A$ in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column will be denoted by $A_{i, j}$. Next, let

$$
U_{n}(\mathbb{R})=\left\{A \in G_{n}(\mathbb{R}) \mid A \text { is upper triangular }\right\}
$$

Then $U_{n}(\mathbb{R})$ is a subgroup of $G_{n}(\mathbb{R})([3]$, page 410$)$. For convenience, let

$$
U_{n}^{+}(\mathbb{R})=\left\{A \in G_{n}(\mathbb{R}) \mid A_{i i}>0 \text { for all } i \in\{1, \ldots, n\}\right\}
$$

If $A, B \in U_{n}^{+}(\mathbb{R})$, then for every $i \in\{1, \ldots, n\},(A B)_{i i}=A_{i i} B_{i i}>0$ and $\left(A^{-1}\right)_{i i}=\frac{1}{A_{i i}}>0$, so $U_{n}^{+}(\mathbb{R})$ is a subgroup of $U_{n}(\mathbb{R})$ and $G_{n}(\mathbb{R})$. The
groups $G_{n}(\mathbb{R})$ and $U_{n}(\mathbb{R})$ are clearly not divisible. An interesting result for the group $U_{n}^{+}(\mathbb{R})$ was given by N. Triphop and A. Wasanawichit [4] as follows:

Theorem 1. ([4]) For every $n \in \mathbb{N}, U_{n}^{+}(\mathbb{R})$ is a divisible group.

The notation of divisibility is defined more extensively in this paper. Divisible hypergroups will be defined. Let us recall some hyperstructures which will be used. A hyperoperation on a nonempty set $A$ is a mapping $\circ$ : $A \times A \rightarrow P^{*}(A)$ where $P(A)$ is the power set of $A$ and $P^{*}(A)=P(A) \backslash\{\emptyset\}$, and $(A, \circ)$ is called a hypergroupoid. If $X$ and $Y$ are nonempty subsets of $A$, let

$$
X \circ Y=\bigcup_{\substack{x \in X \\ y \in Y}}(x \circ y)
$$

A semihypergroups is a hypergroupoid $(A, \circ)$ such that $x \circ(y \circ z)=$ $(x \circ y) \circ z$ for all $x, y, z \in A$. A semihypergroup $(A, \circ)$ with $A \circ x=x \circ A=A$ for all $x \in A$ is called a hypergroup. A hypergroup $(A, \circ)$ is said to be divisible if for any $x \in A$ and every $n \in \mathbb{N}, x \in(y, \circ)^{n}$ for some $y \in A$ where $(y, \circ)^{n}$ denotes the set $y \circ y \circ \ldots \circ y$ ( $n$ copies). Then a total hypergroup, that is, a hypergroup $(A, \circ)$ with $x \circ y=A$ for all $x, y \in A$, is clearly divisible.

Let $G$ be a group and $H$ a subgroup of $G$. It is well-known that the relation $\sim$ defined on $G$ by $a \sim b \Leftrightarrow a=b x$ for some $x \in H$ is an equivalence relation on $G$ and the $\sim$-class of $G$ containing $a \in G$ is $a H$ and $a H=$ $H \Leftrightarrow a \in H$. Similarly, it is easy to verify the relation $\approx$ defined on $G$ by $a \approx b \Leftrightarrow a=x b y$ for some $x, y \in H$ is an equivalence relation on $G$ and the $\approx$-class of $G$ containing $a \in G$ is $H a H$. Moreover, $H a H=H \Leftrightarrow a \in H$. The notation $G / H$ denotes the set of all left cosets of $H$ in $G$, that is,

$$
G / H=\{x H \mid x \in G\} .
$$

Define the hyperoperation $\circ$ on $G / H$ by

$$
x H \circ y H=\{t H \mid t \in x H y\} \text { for all } x, y \in G .
$$

Also, let $G \mid H$ and $\diamond$ the hyperoperation defined on $G \mid H$ as follows:

$$
\begin{gathered}
G \mid H=\{H x H \mid x \in G\} \\
H x H \diamond H y H=\{H t H \mid t \in x H y\} \text { for all } x, y \in G .
\end{gathered}
$$

Then $(G / H, \circ)$ and $(G \mid H, \diamond)$ are both hypergroups ([1], page 11). Notice that if $H$ is normal in $G$, then $(G / H, \circ)=(G \mid H, \diamond)$ which is the quotient group of $G$ by $H$. Moreover, if $H_{1}$ and $H_{2}$ are subgroups of $G$ such that $H_{1} \neq H_{2}$, then $G / H_{1} \neq G / H_{2}$ and $G\left|H_{1} \neq G\right| H_{2}$.

Our main purpose is to show that there are infinite many subgroups $H$ of $U_{n}(\mathbb{R})$ such that the hypergroups $\left(U_{n}(\mathbb{R}) / H, \circ\right)$ and $\left(U_{n}(\mathbb{R}) \mid H, \diamond\right)$ are divisible. Theorem 1 is helpful for our work.

## 2 Basic Properties

Throughout this section, let $G$ be any group, $H$ a subgroup of $G$. Also, $(G / H, \circ)$ and $(G \mid H, \diamond)$ are hypergroups defined previously.

Lemma 1. For $x \in G$ and $n \in \mathbb{N} \backslash\{1\}$,

$$
(x H, \circ)^{n}=\left\{t H \mid t \in(x H)^{n-1} x\right\}
$$

and

$$
(H x H, \diamond)^{n}=\left\{H t H \mid t \in(x H)^{n-1} x\right\}
$$

Hence $x^{n} H \in(x H, \circ)^{n}$ and $H x^{n} H \in(H x H, \diamond)^{n}$ for all $n \in \mathbb{N}$. In particular, $(H, \circ)^{n}=\{H\}=(H, \diamond)^{n}$.

Proof. This is clear for $n=2$. If $k \geq 2$ is such that $(x H, \circ)^{k}=\{t H \mid t \in$ $\left.(x H)^{k-1} x\right\}$ and $(H x H, \diamond)^{k}=\left\{H t H \mid t \in(x H)^{k-1} x\right\}$. Hence

$$
(x H, \circ)^{k+1}=x H \circ\left\{t H \mid t \in(x H)^{k-1} x\right\}=
$$

$=\left\{r H \mid r \in x H t\right.$ for some $\left.t \in(x H)^{k-1} x\right\}=\left\{r H \mid r \in x H(x H)^{k-1} x\right\}=$

$$
=\left\{t H \mid t \in(x H)^{k} x\right\}
$$

and

$$
\begin{gathered}
(H x H, \diamond)^{k+1}=H x H \diamond\left\{H t H \mid t \in(x H)^{k-1} x\right\}= \\
=\left\{H r H \mid r \in x H t \text { for some } t \in(x H)^{k-1} x\right\}= \\
=\left\{H r H \mid r \in x H(x H)^{k-1} x\right\}=\left\{H t H \mid t \in(x H)^{k} x\right\}
\end{gathered}
$$

If $x, y \in G$ and $n \in \mathbb{N}$ are such that $x=y^{n}$, then $x H=y^{n} H \in(y H, \circ)^{n}$ and $H x H=H y^{n} H \in(H y H, \diamond)^{n}$ by Lemma 1. Hence we have:

Proposition 2. If $G$ is a divisible group, then both $(G / H, \circ)$ and $(G \mid H, \diamond)$ are divisible hypergroups.

For any group $G$ if $H=G$, then $|G / H|=1=|G| H \mid$, so ( $G / H, \circ$ ) and $(G \mid H, \diamond)$ are divisible hypergroups. Hence the converse of Proposition 2 is not generally true. A nontrivial example is as follows:

Example 1 By Proposition 1, $S_{3}$ is not a divisible group. Let $H$ be the subgroup of $S_{3}$ generated by the cycle (12), that is, $H=\{(1),(12)\}$. Since $\left|S_{3} / H\right|=\frac{6}{2}=3$ and $\left(\begin{array}{ll}1 & 3\end{array}\right)^{-1}\left(\begin{array}{ll}2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \notin H$, it follows that $H \notin\binom{1}{3} H \notin\binom{2}{3} H \notin H$. Thus

$$
S_{3} / H=\{H,(13) H,(23) H\}
$$

Since (13) $\notin H,\left(\begin{array}{ll}2 & 3\end{array}\right) \notin H$,
$\left(\begin{array}{ll}1 & 3\end{array}\right) \in H\left(\begin{array}{ll}1 & 3\end{array}\right) H=\left(\begin{array}{ll}1 & 3\end{array}\right) H \cup\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) H=$

$$
=\left(\begin{array}{ll}
1 & 3
\end{array}\right) H \cup\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) H=\left(\begin{array}{ll}
1 & 3
\end{array}\right) H \cup\left(\begin{array}{ll}
2 & 3
\end{array}\right) H \text { since }\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

and

$$
S_{3}=H \cup(13) H \cup(23) H,
$$

it follows that

$$
S_{3} \mid H=\{H, H(13) H\} \text { and } H\left(\begin{array}{ll}
2 & 3
\end{array}\right) H=H\left(\begin{array}{ll}
1 & 3
\end{array}\right) H
$$

We know that $\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \in\left(\begin{array}{ll}2 & 3\end{array}\right) H\left(\begin{array}{ll}2 & 3\end{array}\right)$ and $\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)^{3}$. By Lemma 2,

$$
\begin{gathered}
(13) H \in\left(\binom{2}{1} H, \circ\right)^{2},(13) H=\left(\begin{array}{ll}
1 & 3
\end{array}\right)^{3} H \in\left(\left(\begin{array}{l}
1
\end{array} 3\right) H, \circ\right)^{3}, \\
H(13) H \in\left(H\left(\begin{array}{ll}
2 & 3
\end{array}\right) H, \diamond\right)^{2}=(H(13) H, \diamond)^{2}, \\
H(13) H=H\left(\begin{array}{ll}
1 & 3
\end{array}\right)^{3} H \in(H(13) H, \diamond)^{3} .
\end{gathered}
$$

Next, let $n \in \mathbb{N}$ be such that $n \geq 3$. If $n$ is odd, then $(13)=\left(\begin{array}{ll}13\end{array}\right)^{n}$, so by Lemma 2

$$
(13) H=(13)^{n} H \in((13) H, \circ)^{n}
$$

and

$$
H(13) H=H\left(\begin{array}{ll}
1 & 3
\end{array}\right) H=H\left(\begin{array}{ll}
1 & 3
\end{array}\right)^{n} H \in\left(H\left(\begin{array}{ll}
1 & 3
\end{array}\right) H, \diamond\right)^{n}
$$

If $n$ is even, then
$(13)=(23)^{n-2}(23)(12)(23) \in((23) H)^{n-2}(23) H(23)=((23) H, \circ)^{n-1}(23)$,
thus by Lemma 2.

$$
(13) H \in((23) H, \circ)^{n}
$$

and

$$
H(13) H \in(H(23) H, \diamond)^{n}=(H(13) H, \diamond)^{n} .
$$

This shows that for every $n \in \mathbb{N}$, (13) $H \in\left(\left(\begin{array}{ll}1 & 3\end{array}\right) H \text {, o }\right)^{n}$ or (1 3 ) $H \in$ $((23) H, \circ)^{n}$ and $H(13) H \in(H(13) H, \diamond)^{n}$. We can show similarly that for every $n \in \mathbb{N}$, (2 3) $H \in((23) H, \circ)^{n}$ or $(23) H \in((13) H, \circ)^{n}$.

Hence we have that $S_{3}$ is not a divisible group and $H \neq S_{3}$, but $\left(S_{3} / H, \circ\right)$ and $\left(S_{3} \mid H, \diamond\right)$ are divisible hypergroups.

## 3 The Hypergroups $\left(U_{n}(\mathbb{R}) / H, \circ\right)$ and <br> $$
\left(U_{n}(\mathbb{R}) \mid H, \diamond\right)
$$

For each prime $p, \mathbb{Q}(\sqrt{p})$ is a subfield of $\mathbb{R}$ and if $p_{1}$ and $p_{2}$ are distinct primes, then $\mathbb{Q}\left(\sqrt{p_{1}}\right) \neq \mathbb{Q}\left(\sqrt{p_{2}}\right)$. Hence there are infinitely many subfields of $\mathbb{R}$. For each subfield $F$ of $\mathbb{R}$, let

$$
H_{F}=\left\{A \in U_{n}(\mathbb{R}) \mid A_{i i} \in F^{*} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

Clearly, for distinct $F_{1}$ and $F_{2}$ of $\mathbb{R}, H_{F_{1}} \neq H_{F_{2}}$.
Lemma 2. For every subfield $F$ of $\mathbb{R}, H_{F}$ is a subgroup of the group $U_{n}(\mathbb{R})$.
Proof. Since for $A, B \in H_{F},(A B)_{i i}=A_{i i} B_{i i} \in F^{*}$ and $\left(A^{-1}\right)_{i i}=\frac{1}{A_{i i}} \in F^{*}$ for all $i \in\{1, \ldots, n\}$, it follows that $H_{F}$ is a subgroup of $U_{n}(\mathbb{R})$.

Theorem 2. If $F$ is a subfield of $\mathbb{R}$, then $\left(U_{n}(\mathbb{R}) / H_{F}, \circ\right)$ and $\left(U_{n}(\mathbb{R}) \mid H_{F}, \diamond\right)$ are both divisible hypergroups.

Proof. Let $A \in U_{n}(\mathbb{R})$ and $m \in \mathbb{N}$. Define the diagonal matrix $B \in U_{n}(\mathbb{R})$ by $B_{i i}=1$ if $A_{i i}=-1$ if $A_{i i}<0$. Then $B$ is clearly an element of $H_{F}$ and $A B=C^{m}$. Thus $A=C^{m} B^{-1}$ and hence $A H_{F}=C^{m} B^{-1} H_{F}=C^{m} H_{F}$ and $H_{F} A H_{F}=H_{F} C^{m} B^{-1} H_{F}=H_{F} C^{m} H_{F}$. But $C^{m} H_{F} \in\left(C H_{F}, \circ\right)^{m}$ and $H_{F} C^{m} H_{F} \in\left(H_{F} C H_{F}, \diamond\right)^{m}$ by Lemma 1, so $A H_{F} \in\left(C H_{F}, \circ\right)^{m}$ and $H_{F} A H_{F} \in\left(H_{F} C H_{F}, \diamond\right)^{m}$.

Hence the theoem is proved.
Remark 1. If $F_{1}$ and $F_{2}$ are distinct subfields of $\mathbb{R}$, then $H_{F_{1}} \neq H_{F_{2}}$ which implies that $U_{n}(\mathbb{R}) / H_{F_{1}} \neq U_{n}(\mathbb{R}) / H_{F_{2}}$ and $U_{n}(\mathbb{R})\left|H_{F_{1}} \neq U_{n}(\mathbb{R})\right| H_{F_{2}}$.

## References

[1] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
[2] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1984.
[3] P. Horst, Matrix Algebra for social scientist, Holt, Rinehart and Winston Inc., New York, Chicago, San Francisco, Toronto, London, London, 1963.
[4] N. Triphop, A. Wasanawichit, Some divisible matrix groups, Italian J. Pure and Appl. Math., to appear.
[5] A. Wasanawichit, S. Pianskool, Divisibility of certain periodic semigroups, SEA Bull. Math., to appear.

Department of Mathematics, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand, E-mail:Sajee.P@Chula.ac.th E-mail:Amorn.W@Chula.ac.th
E-mail: Yupaporn.K@Chula.ac.th

