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Abstract

In this paper, we mainly study the integral representations for

functions f with values in a universal Clifford algebra C(Vn,n), where

f ∈ Λ(f,Ω),

Λ(f,Ω) =
{
f |f ∈ C∞(Ω, C(Vn,n)),max

x∈Ω

∣∣Djf(x)
∣∣ =

= O(M j)(j → +∞), for someM, 0 < M < +∞} .

The integral representations of Tif are also given. Some properties

of Tif and Πf are shown. As applications of the higher order Pom-

peiu formula, we get the solutions of the Dirichlet problem and the

inhomogeneous equations Dku = f .
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1 Introduction and Preliminaries

Integral representation formulas of Cauchy-Pompeiu type expressing com-

plex valued, quaternionic and Clifford algebra valued functions have been

well developed in [1-9, 12-19, 21, 24, 25 etc.]. These integral representa-

tion formulas serve to solve boundary value problems for partial differential

equations. In [2, 3], H. Begehr gave the different integral representation

formulas for functions with values in a Clifford algebra C(Vn,0), the integral

operators provide particular weak solutions to the inhomogeneous equations

∂kω = f , 4kω = g and ∂4kω = h. In [5, 24], the higher order Cauchy-

Pompeiu formulas for functions with values in a universal Clifford algebra

C(Vn,n) are obtained. In [16], G.N. Hile gave the detailed properties of the

T -operator by following the techniques of Vekua. In [14, 15], K. G
..
urlebeck

gave many properties of the Π-operator. In [18], H. Malonek and B. M
..
uller

gave some properties of the vectorial integral operator
→
Π. In [7, 19, 21],

the integral representations related with the Helmholtz operator are given,

the weak solutions of the inhomogeneous equations Lku = f and Lk∗u = f ,

k ≥ 1, are obtained, where Lu = Du+uh and L∗u = uD−hu, h =
n∑
i=1

hiei,

D is the Dirac operator. In this paper, we shall continue to study the prop-

erties of Cauchy-Pompeiu operator, higher order Cauchy-Pompeiu operator

and Π operator for f ∈ Λ(f,Ω), where

Λ(f,Ω) =

{
f |f ∈ C∞(Ω, C(Vn,n)),max

x∈Ω

∣∣Djf(x)
∣∣ =

= O(M j)(j → +∞), for someM, 0 < M < +∞} ,

the integral representations of Tif are given, some properties of Tif and Πf

are shown. As applications, we get the solutions of the Dirichlet problem
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and the inhomogeneous equations Dku = f which are not in weak sense as

in [2, 25].

Let Vn,s(0 ≤ s ≤ n) be an n–dimensional (n ≥ 1) real linear space with

basis {e1, e2, · · · , en}, C(Vn,s) be the 2n–dimensional real linear space with

basis

{eA, A = {h1, · · · , hr}∈PN, 1 ≤ h1 < · · · < hr ≤ n} ,

where N stands for the set {1, · · · , n} and PN denotes the family of all

order-preserving subsets of N in the above way. We denote e∅ as e0 and eA

as eh1···hr for A = {h1, · · · , hr} ∈ PN . The product on C(Vn,s) is defined by

(1)



eAeB = (−1)#((A∩B)\S)(−1)P (A,B)eA4B, if A,B ∈ PN,

λµ =
∑

A∈PN
∑

B∈PN
λAµBeAeB, if λ=

∑
A∈PN

λAeA, µ=
∑

B∈PN
µBeB.

where S stands for the set {1, · · · , s}, #(A) is the cardinal number of the

set A, the number P (A,B) =
∑
j∈B

P (A, j), P (A, j) = #{i, i ∈ A, i > j}, the

symmetric difference set A4B is also order-preserving in the above way, and

λA ∈ R is the coefficient of the eA–component of the Clifford number λ. We

also denote λA as [λ]A, for abbreviaty, we denote λ{i} as [λ]i. It follows at

once from the multiplication rule (1) that e0 is the identity element written

now as 1 and in particular,

(2)





e2
i = 1, if i = 1, · · · , s,

e2
j = −1, if j = s+ 1, · · · , n,

eiej = −ejei, if 1 ≤ i < j ≤ n,

eh1eh2 · · · ehr = eh1h2···hr , if 1 ≤ h1 < h2 · · · , < hr ≤ n.
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Thus C(Vn,s) is a real linear, associative, but non-commutative algebra

and it is called the universal Clifford algebra over Vn,s.

Frequent use will be made of the notation Rn
z where z ∈ Rn, which

means to remove z from Rn. In particular Rn
0 = Rn \ {0}.

Let Ω be an open non empty subset of Rn, since we shall only consider

the case of s = n in this paper, we shall only consider the operator D which

is written as

D =
n∑

k=1

ek
∂

∂xk
: C(r)(Ω, C(Vn,n))→ C(r−1)(Ω, C(Vn,n)).

Let f be a function with value in C(Vn,n) defined in Ω, the operator D acts

on the function f from the left and from the right being governed by the

rule

D[f ] =
n∑

k=1

∑
A

ekeA
∂fA
∂xk

, [f ]D =
n∑

k=1

∑
A

eAek
∂fA
∂xk

,

An involution is defined by

(3)





eA = (−1)σ(A)+#(A
T
S)eA, if A ∈ PN,

λ =
∑

A∈PN
λAeA, if λ =

∑
A∈PN

λAeA,

where σ(A) = #(A)(#(A) + 1)/2. From (1) and (3), we have

(4)





ei = ei, if i = 0, 1, · · · , s,

ej = −ej, if j = s+ 1, · · · , n,

λµ = µλ, for any λ, µ ∈ C(Vn,s).

The C (Vn.n)–valued (n− 1)–differential form

dσ =
n∑

k=1

(−1)k−1ekdx̂
N

k
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is exact, where

dx̂Nk = dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn.

2 Integral Representations

In this section, we shall give the integral representations for f and Tif ,

i ≥ 1, f ∈ Λ(f,Ω), where

Λ(f,Ω) =

{
f |f ∈ C∞(Ω, C(Vn,n)),max

x∈Ω

∣∣Djf(x)
∣∣ =

= O(M j)(j → +∞), for someM, 0 < M < +∞} .

In [5], [24] the kernel functions

(5)

H∗j (x) =





Aj
ωn

xj

ρn(x)
, n is odd;

Aj
ωn

xj

ρn(x)
, 1 ≤ j < n, n is even;

Aj−1

2ωn
log(x2), j = n, n is even;

An−1

2ωn
Cl,0x

l

(
log(x2)− 2

l−1∑
i=0

Ci+1,0

Ci,0

)
, j = n+ l, l > 0, n is even;

are constructed for any j ≥ 1, where x =
n∑
k=1

xkek, ρ(x) =

(
n∑
k=1

x2
k

)1
2

, ωn

denotes the area of the unit sphere in Rn, and

(6) Aj =
1

2[ j−1
2

][ j−1
2

]!
[ j
2

]∏
r=1

(2r − n)

, 1 ≤ j < n(n is even), j ∈ N∗(n is odd),
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(7) Cj,0 =





1, j = 0,

1

2[ j
2

][ j
2
]!

[ j−1
2

]∏
µ=0

(n+ 2µ)

, j ∈ N∗ = N\{0}.

Lemma 1.(Higher order Cauchy-Pompeiu formula) (see [24])Suppose

that M is an n–dimensional differentiable compact oriented manifold con-

tained in some open non empty subset Ω ⊂ Rn, f ∈ C(r) (Ω, C (Vn,n)),

r ≥ k, moreover ∂M is given the induced orientation, for each j = 1, · · · , k,

H∗j (x) is as above. Then, for z ∈ ◦M
(8)

f(z) =
k−1∑
j=0

(−1)j
∫

∂M

H∗j+1(x− z)dσxD
jf(x) + (−1)k

∫

M

H∗k(x− z)Dkf(x)dxN .

In the following, Ω is supposed to be an open non empty subset of Rn

with a Liapunov boundary ∂Ω. Denote

(9) Tif(z) = (−1)i
∫

Ω

H∗i (x− z)f(x)dxN

where H∗i (x) is denoted as in (5), i ∈ N∗, f ∈ Lp(Ω, C(Vn,n)), p ≥ 1. The

operator T1 is the Pompeiu operator T . Especially, we denote f as T0f .

In [25], it is shown that, if f ∈ Lp(Ω, C(Vn,n)), p ≥ 1, then Tf ∈
Cα(Ω, C(Vn,n)), α =

p− n
p

. Tkf provides a particular weak solution to the

inhomogeneous equation Dkω = f(weak) in Ω. In this section, we shall

show that, if f ∈ Λ(f,Ω), then Tif ∈ C∞(Ω, C(Vn,n)), i ∈ N∗ and Tkf

provides a particular solution to the inhomogeneous equation Dkω = f in

Ω.
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Theorem 1.Let Ω be an open non empty bounded subset of Rn with a Li-

apunov boundary ∂Ω, f ∈ Λ(f,Ω). Then, for z ∈ Ω

(10) Tif(z) =
∞∑
j=0

(−1)j+i
∫

∂Ω

H∗j+i+1(x− z)dσxD
jf(x), i ∈ N.

Proof. Step 1. For f ∈ Λ(f,Ω), we shall firstly prove

(11)

Tif(z) =
k∑
j=0

(−1)j+i
∫

∂Ω

H∗j+i+1(x− z)dσxD
jf(x)

+(−1)i+k+1

∫

Ω

H∗i+k+1(x− z)Dk+1f(x)dxN ,

where i, k ∈ N, z ∈ Ω. It is obvious that (11) is the direct result of Lemma

1 for i = 0.

For i ≥ 1, in view of the properties of the kernel functions of H∗j (x− z)

(12)

D
[
H∗j+1(x− z)

]
=
[
H∗j+1(x− z)

]
D = H∗j (x− z), x ∈ Rn

z , for any j ≥ 1.

Combining Stokes formulas with (12), we have

(13)

(−1)i
∫

Ω\B(z,ε)

H∗i (x− z)f(x)dxN =
k∑
j=0

(−1)j+i
∫

∂(Ω\B(z,ε))

H∗j+i+1(x− z)dσxD
jf(x)

+(−1)i+k+1

∫

Ω\B(z,ε)

H∗i+k+1(x− z)Dk+1f(x)dxN .

For i ≥ 1 and j ≥ 0, it is easy to check that,

(14) lim
ε→0

∫

∂B(z,ε)

H∗j+i+1(x− z)dσxDjf(x) = 0.
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In view of the weak singularity of the kernel functions and (14), taking

limits as ε→ 0 in (13), (11) holds.

Step 2. For f ∈ Λ(f,Ω), we shall show that

(15) lim
k→∞

max
z∈Ω

∣∣∣∣∣∣

∫

Ω

H∗i+k+1(x− z)Dk+1f(x)dxN

∣∣∣∣∣∣
= 0.

Since f ∈ Λ(f,Ω), then there exist constants C0,M , 0 < C0,M < +∞, and

N ∈ N∗, such that for any k ≥ N

(16) max
x∈Ω

∣∣Dkf(x)
∣∣ ≤ C0M

k.

Case 1. n is odd. For any k ≥ N , we have

(17)

∣∣∣∣∣∣

∫

Ω

H∗i+k+1(x− z)Dk+1f(x)dxN

∣∣∣∣∣∣
≤ 2nAi+k+1C0V (Ω)Mk+1δi+k+1−n,

where δ = sup
x1,x2∈Ω

ρ(x1 − x2), V (Ω) denotes the volume of Ω. It is obvious

that the series

(18)
∞∑

k=1

2nAi+k+1C0V (Ω)Mk+1δi+k+1−n

converges. Then

(19) lim
k→∞

2nAi+k+1C0V (Ω)Mk+1δi+k+1−n = 0,

thus (15) holds.

Case 2. n is even. In view of (5) and (7), it can be similarly proved that

(15) holds.

Combining (11) with (15), taking limits k →∞ in (11), (10) follows.

By Theorem 1, we have
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Corollary 1.Suppose that f is k-regular in a domain U in Rn, Ω is an

open non empty bounded subset of U with a Liapunov boundary ∂Ω. Then,

for z ∈ Ω

(20) Tif(z) =
k−1∑
j=0

(−1)j+i
∫

∂Ω

H∗j+i+1(x− z)dσxD
jf(x), i ∈ N.

Remark 1.For i = 0, (20) is exactly the higher order Cauchy integral for-

mula which has been obtained in [5, 24]. Analogous higher order Cauchy

integral formula can be also found in [2, 3, 12].

Corollary 2.Let Ω be an open non empty bounded subset of Rn with a

Liapunov boundary ∂Ω, f ∈ Λ(f,Ω). Then, for z ∈ Ω

(21) D[Ti+1f ] = Tif, i ∈ N.

Remark 2.Corollary 2 implies that Tkf provides a particular solution to

the inhomogeneous equation Dkω = f in Ω for f ∈ Λ(f,Ω). Especially,

suppose U is a domain in Rn, Ω is an open non empty bounded subset of U

with a Liapunov boundary ∂Ω, f is regular in U , then Tkf is (k+ 1)-regular

in Ω. This result gives an improved result in [2, 25] under the assumption

of f ∈ Λ(f,Ω).

Corollary 3.Let U be a domain in Rn, Ω be an open non empty bounded

subset of U with a Liapunov boundary ∂Ω, f be a solution of equation Lu = 0

in U , where Lu = Du + uh, h =
n∑
i=1

hiei, hi ∈ R or h be a real (complex)

number. Then for z ∈ Ω

(22) Tif(z) =
∞∑
j=0

(−1)j+i
∫

∂Ω

H∗j+i+1(x− z)dσxD
jf(x), i ∈ N.
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Proof. Obviously, if f is a solution of equation Lu = 0 in U , where Lu =

Du + uh, h =
n∑
i=1

hiei or h is a real (complex) number, then f ∈ Λ(f,Ω).

By Theorem 1, the result follows.

Example 1.Suppose ui(x) =
∞∑
k=0

(αxiei)
k

k!

4
= eαxiei, i = 1, · · · , n, where α

is a real number. Clearly, Dui(x) = αui(x). Thus for ui(x), z ∈ Ω, by

Corollary 3, (22) holds.

Example 2.Suppose h =
n∑
i=1

hiei, hi ∈ R. Denote R = |h| =

√
n∑
i=1

h2
i .

Obviously, eRxiei satisfies Du − Ru = 0, thus eRxiei is also a solution of

the Helmholtz equation 4u − R2u = 0. Then eRxiei(R − h) is a solution of

equation Du+uh = 0. For eRxiei(R−h), z ∈ Ω, by Corollary 3, (22) holds.

Ω is supposed to be an open non empty subset of Rn with a Liapunov

boundary ∂Ω. Denote

(23) Πf(z) =





∫

Ω

K(x− z)f(x)dxN , z ∈ Ω,

lim
ξ→z
ξ∈Ω

∫

Ω

K(x− ξ)f(x)dxN z ∈ ∂Ω,

where

(24) K(x) =
1

ωn

(
(2− n)e1

ρn(x)
− nxe1x

ρn+2(x)

)
, x ∈ Rn

0 .

f ∈ Hα(Ω, C(Vn,n)), 0 < α ≤ 1, Πf is a singular integral to be taken in the

Cauchy principal sense. In [25], we have proved the existence and H
..
older

continuity of Πf in Ω.

For u ∈ Hα(∂Ω, C(Vn,n)), 0 < α ≤ 1, denote

(25) (F∂Ωu)(x) =

∫

∂Ω

H∗1 (y − x)dσyu(y), x ∈ Rn \ ∂Ω.
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(26) (S∂Ωu)(x) =

∫

∂Ω

H∗1 (y − x)dσyu(y), x ∈ ∂Ω.

(27)
(
F+
∂Ωu
)

(x) =





(F∂Ωu) (x), x ∈ Ω+,

1

2
u(x) + (S∂Ωu) (x) x ∈ ∂Ω.

Theorem 2.Let Ω be an open non empty bounded subset of Rn with a Li-

apunov boundary ∂Ω, f ∈ C1(Ω, C(Vn,n)), Πf is defined as in (23). Then

(28) Πf(z) =
(
F+
∂Ω(αe1αf)

)
(z) + T (e1D [f ]) (z)− 2− n

n
e1f(z), z ∈ Ω,

where α(x) denotes the unit outer normal of ∂Ω.

Proof. For z ∈ Ω, by Stokes formula, we have,

(29)

Πf(z) = lim
ε→0

∫

Ω\B(z,ε)

K(x− z)f(x)dxN

= lim
ε→0

∫

Ω\B(z,ε)

[H∗1 (x− z)e1]Df(x)dxN

= lim
ε→0

∫

∂(Ω\B(z,ε))

H∗1 (x− z)e1dσxf(x) + T (e1D [f ]) (z)

=

∫

∂Ω

H∗1 (x− z)e1dσxf(x) + T (e1D [f ]) (z)− 2− n
n

e1f(z).

For z ∈ ∂Ω, taking limits in (29), (28) follows.

Corollary 4.Let Ω be an open non empty bounded subset of Rn with a

Liapunov boundary ∂Ω, f ∈ Λ(f,Ω), Πf is defined as in (23). Then in Ω

(30) D [Πf ] = e1D [f ] +
n− 2

n
D [e1f ] .
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Corollary 5.Suppose that f is regular in a domain U in Rn, Ω is an open

non empty bounded subset of U with a Liapunov boundary ∂Ω. Πf is defined

as in (23). Then in Ω

(31) 4 [Πf ] = 0,

where 4 is the Laplace operator.

3 Some applications

In this section, we shall give some applications of the higher order Cauchy-

Pompeiu formula. The solutions of Dirichlet problems as well as the inho-

mogeneous equations Dku = f are obtained. In the sequel, Kn denotes the

unit ball in Rn (n ≥ 3), more clearly,

Kn = {x|x = (x1, x2, · · · , xn) ∈ Rn, |x| < 1} .

Denote

(32)

G(y, x) =
1

ρn−2(y − x)
− 1

|y|n−2ρn−2(
y

|y|2 − x)
, x ∈ Kn, y ∈ Kn, x 6= y.

Remark 3.G(y, x) has the following properties:

(1) 4xG(y, x) = 0, x ∈ Kn \ {y}.
(2) G(y, x) = G(x, y), x, y ∈ Kn, x 6= y.

(3) G(y, x) = 0, y ∈ ∂Kn, x ∈ Kn.

Theorem 3.Suppose f ∈ C2(Kn, C(Vn,n)), then for x ∈ Kn

(33) f(x) =
1

ωn

∫

∂Kn

1− |x|2
ρn(y − x)

f(y)dSy +
1

(2− n)ωn

∫

Kn

G(y, x)4yf(y)dyN .
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Proof. By Lemma 1, for x ∈ Kn, we have

(34)

f(x) =
1

ωn

∫

∂Kn

y− x

ρn(y − x)
dσyf(y)− 1

(2− n)ωn

∫

∂Kn

1

ρn−2(y − x)
dσyD[f ](y)

+
1

(2− n)ωn

∫

Kn

1

ρn−2(y − x)
4yf(y)dyN .

By Stokes formula, for x ∈ Kn and x 6= 0, we have

(35)

0 =
1

ωn

∫

∂Kn

y− x

|x|2
ρn(y − x

|x|2 )
dσyf(y)− 1

(2− n)ωn

∫

∂Kn

1

ρn−2(y − x

|x|2 )
dσyD[f ](y)

+
1

(2− n)ωn

∫

Kn

1

ρn−2(y − x

|x|2 )
4yf(y)dyN .

(35) can be rewritten as

(36) 0 =
1

ωn

∫

∂Kn

|x|2
(

y− x

|x|2
)

|x|nρn(y − x

|x|2 )
dσyf(y)−

− 1

(2− n)ωn

∫

∂Kn

1

|x|n−2ρn−2(y − x

|x|2 )
dσyD[f ](y)+

+
1

(2− n)ωn

∫

Kn

1

|x|n−2ρn−2(y − x

|x|2 )
4yf(y)dyN .

In view of

(37) |x|kρk(y − x

|x|2 ) = |y|kρk( y

|y|2 − x), k ∈ N∗,

combining (34), (36) with (37), (33) follows.

For x = 0, by Stokes formula and (34), (33) still holds. Thus the result

is proved.
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Remark 4.Suppose f ∈ C2(Kn, C(Vn,n)), moreover, f is harmonic in Kn.

Then for x ∈ Kn

(38) f(x) =
1

ωn

∫

∂Kn

1− |x|2
ρn(y − x)

f(y)dSy.

(38) is exactly the Poisson expression of harmonic functions.

Theorem 4.The solution of the Dirichlet problem for the Poisson equation

in the unit ball Kn

4u = f in Kn, u = γ on ∂Kn,

for f ∈ Λ(f,Kn) and γ ∈ C(∂Kn, C(Vn,n)) is uniquely given by

(39) u(x) =
1

ωn

∫

∂Kn

1− |x|2
ρn(y − x)

γ(y)dSy +
1

(2− n)ωn

∫

Kn

G(y, x)f(y)dyN .

Proof. It can be directly proved by Corollary 2, Theorem 3, Remark 3 and

Remark 4.

Lemma 2.(see [26]) If f is k-regular in an open neighborhood Ω of the

origin, then in a suitable open ball
◦
B(0, R) ⊂ Ω

(40) f(xN) = f(0) +
∞∑
p=1

k−1∑
j=0

∑

(l1,··· ,lp−j)
Cj,p−jxjVl1,··· ,lp−j(x

N)Cl1,··· ,lp−j ,

Cj,p−j and Cl1,··· ,lp−j are constants which are suitably chosen.

By Lemma 2 and Corollary 2, we have

Theorem 5.The solutions of inhomogeneous equations in the unit ball Kn

Dku = f in Kn,
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for f ∈ Λ(f,Kn) are given in a suitable open ball
◦
B(0, R) ⊂ Kn by

(41) u = C0 +
∞∑
p=1

k−1∑
j=0

∑

(l1,··· ,lp−j)
Cj,p−jxjVl1,··· ,lp−j(x

N)Cl1,··· ,lp−j + Tkf.

C0, Cj,p−j and Cl1,··· ,lp−j are constants which are suitably chosen.
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