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Error inequalities for a generalized quadrature rule are derived.

A summation formula for the special function Si(x) is given.
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1 Introduction

In recent years a number of authors have considered generalizations of some

known and some new quadrature rules. For example, generalizations of the

trapezoid, mid-point and Simpson’s quadrature rules are considered in [1],
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[2], [3], [5] and [9]. As an illustration we give a generalization of the mid-

point quadrature rule (see [3]),

∫ b

a

f(t)dt =
n−1∑

k=0

[
1 + (−1)k

] (b− a)k+1

2k+1(k + 1)!
f (k)(

a+ b

2
)+(−1)n

∫ b

a

Kn(t)f (n)(t)dt,

where

Kn(t) =





(t−a)n

n!
, t ∈ [a, a+b

2

]

(t−b)n
n!

, t ∈ (a+b
2
, b
] .

For n = 1 we get the mid-point rule

∫ b

a

f(t)dt = (b− a)f(
a+ b

2
)−

∫ b

a

K1(t)f ′(t)dt.

In this paper we consider a generalization of a simple quadrature rule of

open type which has the form

(1)

b∫

a

f(t)dt =
b− a

2

[
f(

3a+ b

4
) + f(

a+ 3b

4
)

]
+R(f).

In [14] it is shown that the above 2-point quadrature rule of open type is

optimal with respect to a given way of estimation of the remainder term

(error) R(f). We have (see [14])

(2) |R(f)| ≤ Γ− γ
16

(b− a)2,

where γ ≤ f ′(t) ≤ Γ, t ∈ [a, b].

On the other hand, the well-known 2-point Gauss quadrature rule

(3)
b∫

a

f(t)dt =
b− a

2

[
f(
a+ b

2
−
√

3

6
(b− a)) + f(

a+ b

2
+

√
3

6
(b− a))

]
+R1(f)
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has the estimation of the error (see [10])

(4) |R1(f)| ≤ Γ− γ
24

(5− 2
√

3)(b− a)2.

Since 1
16

= 0.062 5 < 1
24

(5 − 2
√

3) = 0.063 99 we conclude that (2) is

better than (4).

In [14] we can also find various error inequalities for this rule. Here we

also give various error bounds for the generalization of this rule. These error

bounds are generalizations of the error bounds obtained in [14] and they are

similar to error bounds obtained in [15].

Finally, we give a numerical example. In fact, we derive a summation

formula for the special function Si(x) =
∫ x

0
sin t
t
dt.

2 Main results

Lemma 1. Let f : [a, b] → R be a function such that f (n−1) is absolutely

continuous. Then

(5)

∫ b

a

f(x)dx =
b− a

2

[
f(

3a+ b

4
) + f(

a+ 3b

4
)

]
−

−2
m∑
i=1

(b− a)2i+1

42i+1(2i+ 1)!

[
f (2i)(

3a+ b

4
) + f (2i)(

a+ 3b

4
)

]
+R(f),

where m =
[
n−1

2

]
, the integer part of (n− 1)/2,

(6) R(f) = (−1)n
∫ b

a

Sn(t)f (n)(t)dt

and

(7) Sn(t) =





1
n!

(t− a)n, t ∈ [a, 3a+b
4

]

1
n!

(
t− a+b

2

)n
, t ∈ (3a+b

4
, a+3b

4

)

1
n!

(t− b)n, t ∈ [a+3b
4
, b
]
.
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Proof. We prove (5) by induction. First we note that

S1(t) =





t− a, t ∈ [a, 3a+b
4

]

t− a+b
2

, t ∈ (3a+b
4
, a+3b

4

)

t− b, t ∈ [a+3b
4
, b
]

is a Peano kernel for the quadrature rule of open type, that is, we have

−
∫ b

a

S1(t)f ′(t)dt = −f(3a+b
4

) + f(a+3b
4

)

2
(b− a) +

∫ b

a

f(t)dt.

We easily show that (5) holds for n = 2. Now suppose that (5) holds for an

arbitrary n. We have to prove that (5) holds for n → n + 1. To simplify

the proof we introduce the notations

(8) Pn(t) =
(t− a)n

n!
,

(9) Qn(t) =
1

n!

(
t− a+ b

2

)n
,

(10) Rn(t) =
(t− b)n
n!

.

We see that Pn, Qn and Rn form Appell sequences of polynomials, that is

P ′n(t) = Pn−1(t), Q′n(t) = Qn−1(t), R′n(t) = Rn−1(t),

P0(t) = Q0(t) = R0(t) = 1.

We have

(−1)n+1

∫ b

a

Sn+1(t)f (n+1)(t)dt
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= (−1)n+1

∫ 3a+b
4

a

Pn+1(t)f (n+1)(t)dt+ (−1)n+1

∫ a+3b
4

3a+b
4

Qn+1(t)f (n+1)(t)dt

(−1)n+1

∫ b

a+3b
4

Rn+1(t)f (n+1)(t)dt

= (−1)n+1

[
Pn+1(

3a+ b

4
)f (n)(

3a+ b

4
)− Pn+1(a)f (n)(a)

]

+(−1)n+1

[
Qn+1(

a+ 3b

4
)f (n)(

a+ 3b

4
)−Qn+1(

3a+ b

4
)f (n)(

3a+ b

4
)

]

+(−1)n+1

[
Rn+1(b)f (n)(b)−Rn+1(

a+ 3b

4
)f (n)(

a+ 3b

4
)

]

+(−1)n
∫ 3a+b

4

a

Pn(t)f (n)(t)dt+ (−1)n
∫ a+3b

4

3a+b
4

Qn(t)f (n)(t)dt

+(−1)n
∫ b

a+3b
4

Rn(t)f (n)(t)dt

= (−1)n
∫ b

a

Sn(t)f (n)(t)dt

+(−1)n+1

[
Pn+1(

3a+ b

4
)−Qn+1(

3a+ b

4
)

]
f (n)(

3a+ b

4
)

+(−1)n+1

[
Qn+1(

a+ 3b

4
)−Rn+1(

a+ 3b

4
)

]
f (n)(

a+ 3b

4
)

= −f(3a+b
4

) + f(a+3b
4

)

2
(b− a) +

∫ b

a

f(t)dt

+
m∑
i=1

2(b− a)2i+1

42i+1(2i+ 1)!

[
f (2i)(

3a+ b

4
) + f (2i)(

a+ 3b

4
)

]

+(−1)n+1

[
Pn+1(

3a+ b

4
)−Qn+1(

3a+ b

4
)

]
f (n)(

3a+ b

4
)
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+(−1)n+1

[
Qn+1(

a+ 3b

4
)−Rn+1(

a+ 3b

4
)

]
f (n)(

a+ 3b

4
)

= −f(3a+b
4

) + f(a+3b
4

)

2
(b− a) +

∫ b

a

f(t)dt

+

m1∑
i=1

2(b− a)2i+1

42i+1(2i+ 1)!

[
f (2i)(

3a+ b

4
) + f (2i)(

a+ 3b

4
)

]

where m1 =
[
n
2

]
, since

+(−1)n+1

[
Pn+1(

3a+ b

4
)−Qn+1(

3a+ b

4
)

]
f (n)(

3a+ b

4
)

+(−1)n+1

[
Qn+1(

a+ 3b

4
)−Rn+1(

a+ 3b

4
)

]
f (n)(

a+ 3b

4
)

=
(b− a)n+1

4n+1(n+ 1)!

[
1− (−1)n+1

] [
f (n)(

3a+ b

4
) + f (n)(

a+ 3b

4
)

]
.

This completes the proof.

Lemma 2. The Peano kernels Sn(t), n > 1, satisfy:

(11)

∫ b

a

Sn(t)dt = 0, if n is odd,

(12)

∫ b

a

|Sn(t)| dt =
(b− a)n+1

4n(n+ 1)!
,

(13) max
t∈[a,b]

|Sn(t)| = (b− a)n

4nn!
.

Proof. A simple calculation gives

∫ b

a

Sn(t)dt =
2(b− a)n+1

4n+1(n+ 1)!

[
1− (−1)n+1

]
.
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From the above relation we see that (11) holds, since 1 − (−1)n+1 = 0 if n

is odd.

We now consider some properties of the Appell sequences of polynomials

Pn(t), Qn(t) and Rn(t), given by (8), (9) and (10), respectively. We have

that (t−a)n ≥ 0, for each n, such that Pn(t) ≥ 0, ∀n and t ∈ [a, 3a+b
2

]
. Since

P ′n(t) = Pn−1(t) we conclude that Pn(t) are increasing functions. If n is even

then
(
t− a+b

2

)n ≥ 0. If n is odd then
(
t− a+b

2

)n ≥ 0, for t ∈ [a+b
2

a+3b
4

]
and

(
t− a+b

2

)n ≤ 0, for t ∈ [3a+b
4
, a+b

2

]
.

Since Q′n(t) = Qn−1(t) we conclude that Qn(t) is increasing function if

n is even and Qn(t) is decreasing function for t ∈ [3a+b
4
, a+b

2

]
, while Qn(t) is

increasing function for t ∈ [a+b
2

a+3b
4

]
, if n is odd.

We have that (t − b)n ≤ 0 if n ≥ 1, n is odd and (t − b)n ≥ 0 if n ≥ 0,

n is even. Thus, we have that Rn(t) ≤ 0 if n is odd and Rn(t) ≥ 0 if n is

even. As we know R′n(t) = Rn−1(t) such that Rn(t) are decreasing functions

if n is even and Rn(t) are increasing functions if n is odd. We use these

properties to prove (12) and (13).

We have

∫ b

a

|Sn(t)| dt =

∫ 3a+b
4

a

|Pn(t)| dt+

∫ a+3b
4

3a+b
4

|Qn(t)| dt+

∫ b

a+3b
4

|Rn(t)| dt

=
(b− a)n+1

4n(n+ 1)!
.
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Finally, we have

max
t∈[a,b]

|Sn(t)| = max

{
max

t∈[a, 3a+b
4 ]
|Pn(t)| , max

t∈[ 3a+b
4

,a+3b
4 ]
|Qn(t)| , max

t∈[a+3b
4

,b]
|Rn(t)|

}

= max

{∣∣∣∣Pn(
3a+ b

4
)

∣∣∣∣ ,
∣∣∣∣Qn(

3a+ b

4
)

∣∣∣∣ ,
∣∣∣∣Qn(

a+ 3b

4
)

∣∣∣∣ ,
∣∣∣∣Rn(

a+ 3b

4
)

∣∣∣∣
}

=
(b− a)n

4nn!
.

We introduce the notations

I =

∫ b

a

f(t)dt,

F = −f(3a+b
4

) + f(a+3b
4

)

2
(b− a)

+
m∑
i=1

2(b− a)2i+1

42i+1(2i+ 1)!

[
f (2i)(

3a+ b

4
) + f (2i)(

a+ 3b

4
)

]
.

Theorem 3. Let f : [a, b] → R be a function such that f (n−1), n > 1, is

absolutely continuous and there exist real numbers γn,Γn such that γn ≤
f (n)(t) ≤ Γn, t ∈ [a, b]. Then

(14) |I − F | ≤ 1

2

Γn − γn
(n+ 1)!

1

4n
(b− a)n+1 if n is odd

and

(15) |I − F | ≤ (b− a)n+1n

4n(n+ 1)!

∥∥f (n)
∥∥
∞ if n is even.

Proof. Let n be odd. From (6) and (11) we get

R(f) = (−1)n
∫ b

a

Sn(t)f (n)(t)dt = (−1)n
∫ b

a

Sn(t)

[
f (n)(t)− γn + Γn

2

]
dt
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such that we have

(16) |R(f)| = |I − F | ≤ max
t∈[a,b]

∣∣∣∣f (n)(t)− γn + Γn
2

∣∣∣∣
∫ b

a

|Sn(t)| dt.

We also have

(17) max
t∈[a,b]

∣∣∣∣f (n)(t)− γn + Γn
2

∣∣∣∣ ≤
Γn − γn

2
.

From (16), (17) and (12) we get

|I − F | ≤ 1

2

Γn − γn
(n+ 1)!

1

4n
(b− a)n+1.

Let n be even. Then we have

|R(f)| = |I − F | ≤
∫ b

a

|Sn(t)| dt ∥∥f (n)
∥∥
∞ =

(b− a)n+1n

4n(n+ 1)!

∥∥f (n)
∥∥
∞ .

Theorem 4. Let f : [a, b] → R be a function such that f (n−1), n > 1, is

absolutely continuous and let n be odd. If there exists a real number γn such

that γn ≤ f (n)(t), t ∈ [a, b] then

(18) |I − F | ≤ (Tn − γn)
(b− a)n+1

4nn!
,

where

Tn =
f (n−1)(b)− f (n−1)(a)

b− a .

If there exists a real number Γn such that f (n)(t) ≤ Γn, t ∈ [a, b] then

(19) |I − F | ≤ (Γn − Tn)
(b− a)n+1

4nn!
.

Proof. We have

|R(f)| = |I − F | =
∣∣∣∣
∫ b

a

(f (n)(t)− γn)Sn(t)dt

∣∣∣∣ ,
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since (11) holds. Then we have

∣∣∣∣
∫ b

a

(f (n)(t)− γn)Sn(t)dt

∣∣∣∣ ≤ max
t∈[a,b]

|Sn(t)|
∫ b

a

(f (n)(t)− γn)dt

=
(b− a)n

4nn!

[
f (n−1)(b)− f (n−1)(a)− γn(b− a)

]

=
(b− a)n+1

4nn!
(Tn − γn) .

In a similar way we can prove that (19) holds.

Remark 5. Note that we can apply the estimations (14) and (15) only

if f (n) is bounded. On the other hand, we can apply the estimation (18)

if f (n) is unbounded above and we can apply the estimation (19) if f (n) is

unbounded below.

3 A numerical example

Here we consider the integral (special function) Si(x) =
∫ x

0
sin t
t
dt and apply

the summation formula (5) to this integral. We get the summation formula

Si(x) = F (x) +R(x), where

(20) F (x) = 2 sin
x

4
+

2

3
sin

3x

4
+

m∑
i=1

2x2i+1

42i+1(2i+ 1)!

[
f (2i)(

x

4
) + f (2i)(

3x

4
)

]

and f(t) = (sin t)/t. We calculate the derivatives f (j)(t) as follows. We

have

(g(t)h(t))(j) =

j∑

k=0

(
j
k

)
g(k)(t)h(j−k)(t).
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If we choose g(t) = sin t and h(t) = 1/t then we get

f (j)(
x

4
) =

[ j−1
2 ]∑
i=0

(
j

2i+1

)
(−1)j−i+1 (j − 2i− 1)!4j−2i

xj−2i
cos

x

4

+

[ j2 ]∑
i=0

(
j

2i

)
(−1)j−i

(j − 2i)!4j−2i+1

xj−2i+1
sin

x

4
,

f (j)(
3x

4
) =

[ j−1
2 ]∑
i=0

(
j

2i+1

)
(−1)j−i+1 (j − 2i− 1)!4j−2i

3j−2ixj−2i
cos

3x

4

+

[ j2 ]∑
i=0

(
j

2i

)
(−1)j−i

(j − 2i)!4j−2i+1

3j−2i+1xj−2i+1
sin

3x

4
.

We now compare the summation formula (20) with the known compound

formula (for the given quadrature rule of open type),

(21)

∫ x

0

f(t)dt =
h

2

n−1∑
i=0

[
f(

3xi + xi+1

4
) + f(

xi + 3xi+1

4
)

]
+R(x),

where xi = ih, h = x/n, f(t) = (sin t)/t.

Let us choose x = 1. The ”exact” value is Si(1) = 0.946083070367. If

we use (20) with m = 5 then we get Si(1) ≈ 0.946083070363. If we use (21)

with n = 40000 then we get Si(1) ≈ 0.946083070369. All calculations are

done in double precision arithmetic. The first approximate result is obtained

much faster than the second approximate result. The same is valid if we use

some quadrature rule of higher order, for example Simpson’s rule. This is

a consequence of the fact that we have to calculate the function sin t many

times when we apply the compound formula and we have only to calculate

sin(x/4), cos(x/4), sin(3x/4) and cos(3x/4) when we apply the summation

formula.
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Similar summation formulas can be obtained for the integrals (special

functions):
∫ x

0
[(et − 1)/t] dt,

∫ x
0

[(cos t− 1)/t] dt,
∫ x

0
exp(−t2)dt, etc.
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