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Fekete-Szego Inequality for Certain Subclass
of Analytic Functions !
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Abstract
In this present investigation, the authors obtain Fekete-Szego in-
equality for certain normalized analytic function f(z) defined on the
open unit disc for which

(1 - a)z(D"f(2))" + az(D"*f(2))'
(1= a)D"f(z) + aD™1f(2)

(0 < @) lines in a region starlike with respect to 1 and is symmetric
with respect to the real axis. Also certain applications of the main
result for a class of functions defined by convolution are given. As
a special case of this result, Fekete-Szego inequality for a class of
functions defined through fractional derivatives is obtained. The
motivation of this paper is to give a generalization of the Fekete-
Szego inequalities obtained by Srivastava and Mishra by making use

of Salagean differential operator.
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1 Introduction

Let A be class of functions f(z) of the form:

(1.1) f(z) :z—irZakzk

which are analytic in the open disc F = {z: z € C' and |z| < 1}. Further,
let S denote the class of functions which are univalent in E. For a function
f(2) in A, we define

D°f(z) = [(2), D' f(2) = Df(2) = 2f'(),

D"f(z) = D(D"'f(z)) (neN=1{1,2,3,.}).

Note that

(1.2) D"f(z) =2+ ik"akzk, (n € No = NU{0}).

The differential operator D™ was introduced by Salagean [4].

Let ¢(z) be an analytic function with positive real part on E with
»(0) = 1, ¢'(0) > 0 which maps the unit disk F onto a region starlike
with respect to 1 which is symmetric with respect to the real axis. Let

S*(¢) be the class of functions in f(z) € S for which

2f'(2)
f(2)
and C(¢) be the class of functions in f(z) € S for which

< ¢(2), (z € E)

2f"(z)

o <0G (eB),

1+
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where < denotes the subordination between analytic functions. These
classes were investigated and studied by Ma and Minda [3]. They have
obtained the Fekete-Szegé inequality for the functions in the class C(¢).
Since f € C(¢) if and only if zf'(z) € S*(¢), we get the Fekete-Szegd
inequality for functions in the class S*(¢). For a brief history of the Fekete-
Szego problem for class of starlike, convex, and close-to convex functions,

see the recent paper by Srivastava et al. [2].

In the present paper, we obtain the Fekete-Szego inequality for func-
tions in a more general class M, ,(¢) of functions which we define below.
Also we give applications of our results to certain functions defined through
convolution (or the Hadamard product) and in particular we consider a
class M ,(¢) of functions defined by fractional derivatives. The motivation
of this paper is to give a generalization of the Fekete-Szego inequalities of

Srivastava and Mishra [1].

Definition 1.1. Let ¢(z) be a univalent starlike function with respect to
1 which maps the unit disc E onto a region in the right half plane which is
symmetric with respect to the real azis, ¢(0) =1 and ¢'(0) > 0. A function
f € Aisin the class My ,.(¢) if

(1 - )2(D"f(2)) + az(D" f(2))
(1 —a)D"f(2) + aD"t1f(z)

< ¢(2) (a = 0).

For fixed g € A, we define the class MY, (¢) to be the class of functions
f € A for which (f *xg) € My ().

In order to derive our main results, we have to recall here the following
Lemma [3].
Lemma 1.2. If pr = 14 12 + 2% + ... is an analytic function with

positive real part in E, then
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—4v + 2 if v <0;
‘cz—vcﬂﬁ 2 if 0<wv<1;
4y — 2 if  v>1.

When v < 0 or v > 1, the equality holds if and only if pi(2) is
(14 2)/(1 — z) or one of its rotations. If 0 < v < 1, then the equality
holds if and only if p;(2) is (1+22)/(1 —2?) or one of its rotations. If v = 0,
the equality holds if and only if

1 1 142 1 1 1-2
(S 4+ S
nz) =G+ NS H G N

or one of its rotations. If v = 1, the equality holds if and only if p;(2) is the

0<xr<1)

reciprocal of one of the functions such that the equality holds in the case
of v = 0. Also the above upper bound is sharp, and it can be improved as

follows when 0 < v < 1.

1
{02—v03‘+v|01|2§2 (0<v§§)

and

1
}CQ—UC%|+(1—U)|C1|2§2 (§<v<1).

2 Fekete-Szego Problem

Our main result is the following:

Theorem 2.1. Let ¢(z) =1+ Bz + By2® + ... . If

f(z) =2+ Zk"akzk, ne Ny={0fUN
fe=2
belongs to My ,,(¢), then
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(2.1) o )
3”(2—5404) Con(1+ a)2B% + 37(2 + 4a) B} if u<oy;

’ag—ua§}< m if o1 <p < oy;
\ _3"(2% 4 * 22”(1M+ Oé)zB% - 377,(2:_46()3% if 1= o2,

where

o 2"+ @) {(B: — By) + Bi}
P 3n(2 + 4a) B? ’
o2+ @) {(Ba + By) + Bi}
2 37(2 + 4a) B2 ’

The result is sharp.
Proof. For f(z) € M, ,(¢), let

Q= DE) (DR

From (2.2), we obtain

(2.3) 2"(1 + a)ag = by and 3"(2 + 4a)az = by + 2*"(1 + a)?as.
Since ¢(z) is univalent and p < ¢, the function

14070
) =T T00)

is analytic and has a positive real part in E. Also we have

=142+ + ...

(2.4) p(z) = o(————



46 H. Orhan and E. Gunes

and from this equation (2.2),

C1z + 0222 + ...
241z + 92?2 + .
1 1 1,

1+ b1z +be2® 4 ... = ¢

) =

= ¢[§clz + 5(02 — 561)22 +..]=
1 1 15 5 1,5,
=1+ B1§Clz —+ Bli(CQ — §C1)Z + ...+ B2chz + ...
we obtain
1 1 1 1
bl = 53101 and bg = 531(02 — 50?) + ZBQC%.

Therefore we have

B 1 By 3"(2+4a)u —2*"(1+ a)?
2 1 2 2
a3 — 1 2.3”(2+4a){02 alz(-5 + ATy I
By

(2.5) az — paz = m{CQ —vcl},
where

1 B n(2 4 4 _92n(1 2

2 By 220 (1 + «a)?

If u < oq,then by applying Lemma 1.2 , we get
|a3 - ,ua%‘ =
By 51 By 3"(2+4a)pu — 22"(1 + a)?
2372+ da) | ;-3 22n(1 + a)? v}

By K 2 1 2
— Bi+——B
2+4a) 2(14a)2 t i 37(2 +4a)

which is the first part of assertion (2.1).

oo = ] < o
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Next, if 4 > 09,by applying Lemma 1.2 | we write

|as — pas| =
By 51 By  3"(2+4a)p —22"(1 + a)?
=— 1 -1 -= B
et |2 alil- gt 220 (1 + a)? 0}
B, Iz 2 1 2

~udl < — B By.
a5 = pa| < 32 +4a) 2 (1ta)P 32 tda) !

If 4 = oq,then equality holds if and only if

1+ 142 1-A1—=2

P(e) = (G +

0<A<T; E

or one of its rotations.

If u = o9,then
1 By  3"(2+4a)p —22"(1 4 a)?
=== Bl =0.
gt 22n(1 + a)? 1
Therefore,

1 1+ A 1+2 1—A 11—z
= O<A<1l;z€EFE).

n(2) I il S e wra 2 E)

Finally, we see that

o — ] =
1 By  3"(2+4a)pu —22"(1 + a)?

—A{-(1-= B
Co 01{2( B, + 22"(1+a)2 1)}

©2.37(2 4+ 4a)

and

1 B 3"(2+4 —22(1 2
ly Do SR 20 o)

B, 227(1 + )2 Bl =1, (01 < p < 03).

max
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Therefore using Lemma 1.2. |, we get

B1 ‘Cl| < B1

_ <u< .
as — pas| = 2372 +4a) — 37(2+4a)’ (15 s 00)
If o1 < p < o9,then we have
1+)\z
pi(z) = vl <A<,

Our result now follows by an application of Lemma 1.2. To show that the

bounds are sharp, we define the functions K% (5 = 2,3, ...) by

(1 — )z[D"K%])(2) + az[D"H K %) (2)

( e
(1= D KEIe) +alDwRE:) )
K (0)=0=[K)'(0) -1
and function F» and GX(0 < A < 1) by
(1 — a)2[D"F}) (2) + az[ D™ FR) () e 2(z + A)]
(1 —a)[D"F}|(2) + a[DMHLEX(2) 1+ Az
FA0)=0=(FY'(0) -
and
(1 — )z[D"GAY (2) + az[D"HLGA) (2) _ ¢[_z(z + )\)]
(1 —a)[D"GR)(z) + Oé[D"“GA](Z) 1+ Az 7

G0) =0 = (G")(0) —

Clearly the functions K¢, F), GA € M, ,(¢). Also we write K2 := K22,
If 4 < o0or p > o9,then the equality holds 1f and only if f is K¢ or one of
its rotations. When o, < p < 0,the equality holds if and only if f is K22
or one of its rotations. If © = o1 then the equality holds if and only if f is
F? or one of its rotations. If y = o9 then the equality holds if and only if f

is G2 or one of its rotations.
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Remark 2.2. [If o0y < pu < 09, then, in view of Lemma 1.2, Theorem 2.1

can be improved. Let o3 be given by

22"(1+ a)*{B} + By}
g3 .=
’ 3n(2 + 4a) B?

If o1 < p < o3,then

22(1 + a)? 3"u(2 + 4a) — 22"(1 + a)?

2 201 |2
o - rlt e T P T Bt T ey Dlel S
< B
~ 32+ 4a)

If o3 < pu < og,then
o 221+ «)? 3"u(2 4 4a) — 22" (1+ a)? o0 19
o~ g E P B T ey Dl S
< B
~ 32+ 4a)

Proof. For the values of 07 < pu < o3,we have

a5 — paj| + (1 — o) |as|” =
B}

B, 9 s
)|c2 o] + (u 01)4.22”(1—{—@)2 el =

" 304(1+ 2a
_ B, 2
= a0 12 Tl

B 22n(1+o¢)2{(Bg—Bl)+B%}) B12 ’C ‘2 _
37(2 + 4a)B? 422014 a)2

B By By

©3n(2 + 4a) 3n(2 + 4a)’

Similarly, for the values of o3 < pu < g9,we write

+(p

1
{§HC2 —vcf| +v ]} <
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B B?
‘ag — ua§|+(02—,u) |a2|2 = W—l{—Q&) ‘62 — UC%‘—F(UQ—/L)WW |Cl|2
_ By B _UCQI+(22"(1+a)2{(Bz+Bl)+Bf}_u) B? e
3r4(1+2a0) 2 37(2 + 4a) B2 422014 )2
By 1 2 2
- 3n(2 + 40[){5“02 - vcl{ + (1 =) al’}
<__B
~ 37(2 +4a)

Thus, the proof of Remark 2.2 is evidently completed.

3 Applications to Functions Defined by

Fractional Derivatives

In order to introduce the class M, Q,n(qﬁ), we need the following:
Definition 3.1. Let f(2) be analytic in a simply connected region of the

z—plane containing the origin. The fractional derivative of f of order X is

defined by

LA

D2 = | ——d 0<A<1

) = rre s | Tl (0<A<)
0

where the multiplicity of (z — ¢)* is removed by requiring that log(z — () is

real for z —( > 0. Using the above Definition 3.1. and its known extensions

inwvolving fractional derivatives and fractional integrals, Owa and Srivastava
[5] introduced the operator Q* : A — A defined by

() (2) =T(2 = NDXf(2), (A#2,3,4,...).
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The class MaAn(gb) consists of functions f € A for which Q*f € M, ,.(¢).
Note that Mg(¢) = S+ (¢) and M, (¢) is the special case of the class
Mgn(gzﬁ) when

[e.o]

(3.1) ; k;il_ )A)z’f.

Let

=24+ g (g >0).
h—2

Since

D"f(z) =2+ Z ka2 € M ()

If and only if

(frg) =2+ > Kgarz € Mon(o),
k=2

we obtain the coefficient estimate for functions in the class Mg (¢), from
the corresponding estimate for functions in the class M, ,(¢). Applying
Theorem 2.1 for the function (f * g) = z + 2"gaas2% + 3"gsasz> + ..., we get
the following Theorem 3.2 after an obvious change of the parameter  :
Theorem 3.2. Let the function ¢(z) be given by ¢(z) = 1+ Byz+ By2?+....
If D" f(z) given by (1.2) belongs to MJ, (¢), then

|as — paj| <
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(1, B 1193 1 ‘
- - ) 52— b Y < et
p e i) Prarg A s
1. B
< B ; < < .
T % [3”(2 +B4a)] o spson 1
2 Hgs 9 01
T Bf — B >
\ 93[ 3"(2 + 4a) * 2n(14a)2g2 ' 37(2+ 4a) il if p=> oo,
where

_ 51+ a)?2? (B, — Bi) + BY

o o 3@tiaB
5y i 20+ 72" (Bo+ By) + B,
2 s 3n(2 4 4a)B2
The result is sharp.
Since
T(k+1I(2 -
Q)\Dn — n k
(@ D) =43 Sy A
we have
ING)NCEDY 2
(32) PZETTPE N 2o
and
r4)re-—a 6
(33 goi= LN

TA—N) 2-NB-\)

For g, and g3 given by (3.2) and (3.3), Theorem 3.2 reduces to the following:
Theorem 3.3. Let the function ¢(z) be given by ¢(2) = 1+ Byz+ By2?+....
If D" f(z) given by (1.2) belongs to Mg, (¢), then

|az — pa3| <
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IN

23— N (1+a)222
o= s2=n |

(By — By) + B%
3"(2 + 4a) B?

]

gy 23N T a2

32— \)

(By + By) + Bf
3n(2 + 404)B%

!

The result is sharp.

Remark 3.3.

23

(2-NB-=A), B, 32— u
6 [3”(2+4a) 23— ) 22”(1+Oz)2B%+ 3n(2+4a)Bﬂ’
if p<o;
2-NB=). B . .
6 [3n(2 n 4a)] ifor<ps oy
(2—>\)(3—/\)[_ By 32-N  p g 1 B
6 3n(24+4a) 2B -N)22(1+a)2 ' 3024 4a) MV
Zf H > 02,
where

When o = 0, n = 0, By = 8/7? and By = 16/37?* the

above Theorem 3.1 reduces to a recent result of Srivastava and Mishra [1,
Theorem 8, p. 64] for a class of functions for which Q*f(z) is a parabolic

starlike functions [6, 7.
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