Development in series of orthogonal polynomials with applications in optimization¹

Adrian Branga

Dedicated to Professor Ph.D. Alexandru Lupaş on his 65th anniversary

Abstract

Our aim in this paper is to find some developments in Chebyshev series and using these to prove that $\min_{Q_n \in \tilde{\Pi}_n} \|Q_n\|_p = \|\widetilde{T}_n\|_p$, where $\widetilde{T}_n(x) = \frac{1}{2^{n-1}} \cos(n \arccos x)$ is the *n*-th Chebyshev monic polynomial.

2000 Mathematics Subject Classification: 33C45, 41A50, 42A05

1 Introduction

Let $\widetilde{\Pi}_n$ be the set of all real monic polinomials and $L^p_w[-1,1]$, $1 , the Lebesque linear space with the weight <math>w(x) = \frac{1}{\sqrt{1-x^2}}$, endowed with the norm $\|f\|_p = \left[\int\limits_{-1}^1 |f(t)|^p w(t) dt\right]^{1/p}$.

Accepted for publication (in revised form) 12 February, 2007

¹Received 30 December, 2006

Theorem 1.1 The extremal problem

(1)
$$||Q_n||_p \to \min, \ Q_n \in \widetilde{\Pi}_n,$$

has an unique solution.

Proof. It is known that the Lebesque normed linear space $L_w^p[-1,1]$ is strict convex for 1 .

Lemma 1.1 The extremal problem (1) is equivalent with the following problem:

(2)
$$\int_{0}^{\pi} \left| \frac{1}{2^{n-1}} \cdot \cos nt + \sum_{i=0}^{n-1} a_i \cdot \cos it \right|^p dt \to \min ,$$

where $a = (a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$.

Proof. $\{T_0, \ldots, T_n\}$ represents a basis in $\widetilde{\Pi}_n$, hence there is $a = (a_0, \ldots, a_{n-1}) \in \mathbb{R}^n$ so that:

$$\widetilde{Q}_n(x) = \frac{1}{2^{n-1}} \cdot T_n(x) + \sum_{i=0}^{n-1} a_i \cdot T_i(x) .$$

Therefore

$$\|\widetilde{Q}_n\|_p = \left[\int_0^{\pi} \left| \frac{1}{2^{n-1}} \cdot \cos nt + \sum_{i=0}^{n-1} a_i \cdot \cos it \right|^p dt \right]^{1/p}.$$

Further we consider the function $\varphi: \mathbb{R}^n \to \mathbb{R}$ be the function

(3)
$$\varphi(a_0, \dots, a_{n-1}) = \int_0^{\pi} \left| \frac{1}{2^{n-1}} \cdot \cos nt + \sum_{i=0}^{n-1} a_i \cdot \cos it \right|^p dt.$$

Hence

$$\frac{\partial \varphi}{\partial a_k}(a_0, \dots, a_{n-1}) = p \cdot \int_0^{\pi} \left| \frac{1}{2^{n-1}} \cdot \cos nt + \sum_{i=0}^{n-1} a_i \cdot \cos it \right|^p \cdot sgn\left[\frac{1}{2^{n-1}} \cdot \cos nt + \sum_{i=0}^{n-1} a_i \cdot \cos it \right] \cdot \cos kt \, dt \,, \, k = 0, 1, \dots, n-1.$$

If we shall prove that $\frac{\partial \varphi}{\partial a_k}(a^*) = 0$, $k = 0, 1, \dots, n-1$, where $a^* = (0, \dots, 0) \in \mathbb{R}^n$, using Theorem 1.1 and Lemma 1.1 we deduce that $\widetilde{T}_n(x)$ is the unique solution of the extremal problem (1).

Easily it obtains

(5)
$$\frac{\partial \varphi}{\partial a_k}(a^*) = \frac{p}{4^{n-1}} \cdot \int_0^{\pi} |\cos nt|^{p-1} \cdot sgn[\cos nt] \cdot \cos kt \, dt$$

and we denote:

(6)
$$J_{n,k} = \int_{0}^{\pi} |\cos nt|^{p-1} \cdot sgn[\cos nt] \cdot \cos kt \, dt$$

where k = 0, 1, ..., n - 1.

2 Main results

Further for $f,g\in C[0,1]$ and $\alpha>-1$ let consider the following inner product

$$\langle f, g \rangle_{\alpha} = \int_{0}^{1} f(t)g(t) \frac{t^{\alpha}(1-t)^{\alpha}}{B(\alpha+1, \alpha+1)} dt.$$

Lemma 2.1 (see [3]) If $z \in [0,1]$, $-\infty < -4\lambda < \min(0, 2\alpha + 1)$, then

(7)
$$z^{\lambda} = \frac{B(\lambda + \alpha + 1, \alpha + 1)}{B(\alpha + 1, \alpha + 1)} \cdot \sum_{k=0}^{\infty} \frac{(-1)^k (-\lambda)_k}{(2\alpha + \lambda + 2)_k} \cdot \gamma_k^{(\alpha)} \varphi_k^{(\alpha)}(z),$$

where

$$B(a,b)$$
 is the "beta" function, $a > -1, b > -1$,

$$(c)_k = c(c+1)\dots(c+k-1), k = 1, 2, \dots, (c)_0 = 1, c \in \mathbb{R},$$

(8)
$$\gamma_k^{(\alpha)} = \begin{cases} 1, k = 0 \\ \frac{2k + 2\alpha + 1}{k + 2\alpha + 1} \cdot \frac{(2\alpha + 2)_k}{k!}, & k = 1, 2, \dots \end{cases},$$

(9) $\varphi_k^{(\alpha)}(z) = R_k^{(\alpha,\alpha)}(2z-1)$ is the ultraspherical polynomials,

with the condition that the series converges uniformly on [0,1].

In addition

(10)
$$\langle \varphi_k^{(\alpha)}, \varphi_j^{(\alpha)} \rangle_{\alpha} = \begin{cases} 0, k \neq j \\ \frac{1}{\gamma_k^{(\alpha)}}, k = j \end{cases} .$$

Lemma 2.2 If $z \in [0, 1]$, $\lambda > 0$ then

(11)
$$z^{\frac{\lambda}{2}} = \frac{\Gamma(\lambda+1)}{2^{\lambda}\Gamma(\frac{\lambda}{2}+1)} \cdot \sum_{k=0}^{\infty} \frac{\binom{\lambda/2}{k} \cdot k!}{\Gamma(\frac{\lambda}{2}+k+1)} \cdot \gamma_k \cdot T_k^*(z),$$

where $T_k^*(z)$ is the k-th Chebyshev polynomial on [0,1] and

$$\gamma_k = \begin{cases} 1, k = 0 \\ 2, k = 1, 2, \dots \end{cases},$$

with the condition that the series converges uniformly on [0,1].

In addition

(12)
$$\langle T_k^*, T_j^* \rangle_{-\frac{1}{2}} = \begin{cases} 0, k \neq j \\ \frac{1}{\gamma_k}, k = j \end{cases} .$$

Proof. In (7) we consider $\lambda := \frac{\lambda}{2}$, $\alpha := -\frac{1}{2}$ and using (8)–(10) we deduce (11) and (12).

Lemma 2.3 If $\lambda > 0$ then

$$(13) \int_{0}^{1} z^{\frac{\lambda}{2}} \cdot T_{j}^{*}(z) \frac{dz}{\sqrt{z(1-z)}} = \frac{\pi\Gamma(\alpha+1) \cdot {\binom{\lambda/2}{j}} j!}{2^{\lambda}\Gamma\left(\frac{\lambda}{2}+1\right) \cdot \Gamma\left(\frac{\lambda}{2}+1+j\right)}, j = 0, 1, \dots.$$

Proof. From (11), (12) we find

$$\left\langle z^{\frac{\lambda}{2}}, T_j^*(z) \right\rangle_{-\frac{1}{2}} = \frac{\Gamma(\lambda+1)}{2^{\lambda} \Gamma\left(\frac{\lambda}{2}+1\right)} \cdot \frac{\binom{\lambda/2}{j} j!}{\Gamma\left(\frac{\lambda}{2}+j+1\right)}$$

and using the definition of inner product we obtain (13).

Further for $f, g \in C[-1, 1]$ we use the following inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) \frac{dt}{\sqrt{1 - t^2}}$$
.

We consider the following development in Chebyshev series

(14)
$$|z|^{\lambda} = \sum_{k=0}^{\infty} c_k(\lambda) \cdot T_k(z), z \in [-1, 1], \lambda > 0,$$

where

(15)
$$c_k(\lambda) = \frac{1}{\pi} \gamma_k \cdot \langle |z|^{\lambda}, T_k(z) \rangle = \frac{1}{\pi} \gamma_k \cdot \int_{-1}^1 |z|^{\lambda} T_k(z) \frac{dz}{\sqrt{1-z^2}}.$$

Substituting z = -t in (15) and using the relation

$$T_k(-t) = (-1)^k T_k(t),$$

we find

(16)
$$c_{2j+1}(\lambda) = 0, k = 0, 1, \dots,$$

hence

(17)
$$|z|^{\lambda} = \sum_{k=0}^{\infty} c_{2k}(\lambda) \cdot T_{2k}(z),$$

where

(18)
$$c_{2k}(\lambda) = \frac{2}{\pi} \gamma_k \cdot \int_0^1 z^{\lambda} T_{2k}(z) \frac{dz}{\sqrt{1 - z^2}} .$$

It is known that

$$T_{mn}(z) = T_m(T_n(z)), m, n \in \mathbb{N},$$

hence

(19)
$$T_{2k}(z) = T_k(T_2(z)) = T_k(2z^2 - 1) .$$

Using (19) in (18) and substituting $z^2 = t$ we obtained

(20)
$$c_{2k}(\lambda) = \frac{1}{\pi} \gamma_k \cdot \int_{0}^{1} t^{\frac{\lambda}{2}} T_k^*(t) \frac{dt}{\sqrt{t(1-t)}}.$$

From equalities (13), (17) and (20) we conclude with

Lemma 2.4 If $\lambda > 0$, $z \in [-1,1]$ we have the following development in Chebyshev series

(21)
$$|z|^{\lambda} = \sum_{k=0}^{\infty} c_{2k}(\lambda) \cdot T_{2k}(z),$$

where

(22)
$$c_{2k}(\lambda) = \frac{\gamma_k \cdot \Gamma(\lambda+1) \cdot {\binom{\lambda/2}{k}} \cdot k!}{2^{\lambda} \cdot \Gamma\left(\frac{\lambda}{2}+1\right) \cdot \Gamma\left(\frac{\lambda}{2}+1+k\right)}, k = 0, 1, \dots$$

The previous result allow us to obtain:

Theorem 2.1 If 1 the following equality holds

(23)
$$|T_n(x)|^{p-1} = a_0(p) + \sum_{i=1}^{\infty} a_i(p) \cdot T_{2jn}(x), \ x \in [-1, 1] ,$$

(24)
$$|\cos nt|^{p-1} = a_0(p) + \sum_{j=1}^{\infty} a_j(p) \cdot \cos(2jnt), \ t \in [0.\pi] ,$$

where

$$(25) a_0(p) = \frac{\Gamma(p)}{2^{p-1}\Gamma^2(\frac{p+1}{2})}, a_j(p) = \frac{\Gamma(p) \cdot {\binom{p-1}{2}} \cdot j!}{2^{p-2}\Gamma(\frac{p+1}{2})\Gamma(\frac{p+1}{2}+j)}, j = 1, 2, \dots$$

Proof. In (21) we consider $\lambda := p-1$, $1 , <math>z := T_n(x)$, $x \in [-1, 1]$ and we find (23). If we consider in (23) $t := \arccos x$, $t \in [0, \pi]$ we deduce (24).

Further we consider the following situation:

1. Suppose that

n is even, $n=2s, s\in N^*$, and k is odd, $k=2m+1, m=\overline{0,s-1}$, or n is odd, $n=2s+1, s\in N$, and k is even, $k=2m, m=\overline{0,s}$.

Substituting in (6) $t = \pi - x$ we deduce

Theorem 2.2 If n = 2s, $s \in N^*$, and k = 2m + 1, $m = \overline{0, s - 1}$, or n = 2s + 1, $s \in N$, and k = 2m, $m = \overline{0, s}$ we have

(26)
$$J_{2s,2m+1} = 0 \text{ and } J_{2s+1,2m} = 0.$$

2. Suppose that n is even, $n=2s, s\in N^*$, and k is even, $k=2m, m=\overline{0,s-1}$.

Let $t_i = \frac{(2i-1)\pi}{4s}$, $i = \overline{1,2s}$, be the zeros of $\cos(2st)$ on $[0,\pi]$ and $t_0 = 0$, $t_{2s+1} = \pi$.

It is known that

(27)
$$\cos(2st) > 0$$
, for $t \in \bigcup_{i=0}^{s} (t_{2i}, t_{2i+1})$

and

(28)
$$\cos(2st) < 0, \text{ for } t \in \bigcup_{i=1}^{s} (t_{2i-1}, t_{2i}).$$

Therefore

$$(29) J_{2s,2m} = J_{2s,2m}^+ + J_{2s,2m}^-$$

where

(30)
$$J_{2s,2m}^{+} = \sum_{i=0}^{s} \int_{t_{2i}}^{t_{2i+1}} (\cos 2st)^{p-1} \cdot \cos 2mt \, dt,$$

(31)
$$J_{2s,2m}^{-} = -\sum_{i=1}^{s} \int_{t_{2i-1}}^{t_{2i}} (-\cos 2st)^{p-1} \cdot \cos 2mt \, dt.$$

From (24) it follows that

Lemma 2.5 If m = 0, 1, ..., s - 1, $s \in N^*$, then

(32)
$$J_{2s,2m}^{+} = a_0(p) \cdot \sum_{i=0}^{s} \int_{t_{2i}}^{t_{2i+1}} \cos(2mt)dt + \sum_{j=1}^{\infty} a_j(p) \sum_{i=0}^{s} \int_{t_{2i}}^{t_{2i+1}} \cos(4jst) \cdot \cos(2mt)dt ,$$

(33)
$$J_{2s,2m}^{-} = -a_0(p) \cdot \sum_{i=1}^{s} \int_{t_{2i-1}}^{t_{2i}} \cos(2mt)dt - \sum_{j=1}^{\infty} a_j(p) \cdot \sum_{i=1}^{s} \int_{t_{2i-1}}^{t_{2i}} \cos(4jst) \cdot \cos(2mt)dt .$$

After an easily computation we obtain the results.

Lemma 2.6 If $i = 0, ..., s, m = 0, ..., s - 1, s \in N^*$, then

$$(34) \int_{t_{2i}}^{t_{2i+1}} \cos(2mt) dt = \begin{cases} \frac{\pi}{4s}, & i = 0, s, \ m = 0\\ \frac{\pi}{2s}, & i = \overline{1, s - 1}, \ m = 0\\ \frac{1}{2m} \cdot \sin \frac{m\pi}{2s}, & i = 0, s, \ m = \overline{1, s - 1}\\ \frac{1}{m} \cdot \sin \frac{m\pi}{2s} \cdot \cos \frac{2im\pi}{s}, & i = \overline{1, s - 1}, \ m = \overline{1, s - 1} \end{cases}$$

Lemma 2.7 If $i = 0, ..., s, m = 0, ..., s - 1, s \in N^*, j = 1, 2, ..., then$

$$\int_{t_{2i}}^{t_{2i+1}} \cos(4jst) \cdot \cos(2mt)dt = \begin{cases}
0, \ i = \overline{0, s}, \ m = 0 \\
\frac{(-1)^{j+1} \cdot m}{2(4j^2s^2 - m^2)} \cdot \sin\frac{m\pi}{2s}, \ i = 0, s, \ m = \overline{1, s - 1} \\
\frac{(-1)^{j+1}m}{4j^2s^2 - m^2} \cdot \sin\frac{m\pi}{2s} \cdot \cos\frac{2im\pi}{s}, \ i = \overline{1, s - 1}, \ m = \overline{1, s - 1}.
\end{cases}$$

Lemma 2.8 If $i = 1, ..., s, m = 0, ..., s - 1, s \in N^*$, then

$$(36) \int_{t_{2i-1}}^{t_{2i}} \cos(2mt) dt = \begin{cases} \frac{\pi}{2s}, & i = \overline{1, s}, \ m = 0\\ \frac{1}{m} \cdot \sin\frac{m\pi}{2s} \cdot \cos\frac{(2i-1)m\pi}{s}, & i = \overline{1, s}, \ m = \overline{1, s-1}. \end{cases}$$

Lemma 2.9 If $i = 1, ..., s, m = 0, ..., s - 1, s \in N^*, j = 1, 2, ..., then$

$$\int_{t_{2i-1}}^{t_{2i}} \cos(4jst) \cdot \cos(2mt) dt =$$

$$= \begin{cases}
0, & i = \overline{1, s}, \ m = 0 \\
\frac{(-1)^{j+1} \cdot m}{4j^2s^2 - m^2} \cdot \sin\frac{m\pi}{2s} \cdot \cos\frac{(2i-1)m\pi}{s}, i = \overline{1, s}, \ m = \overline{1, s-1}.
\end{cases}$$

Lemma 2.10 If m = 0, 1, ..., s - 1, $s \in N^*$, then

(38)
$$\sum_{i=1}^{s} \cos \frac{2im\pi}{s} = 0 \text{ and } \sum_{i=1}^{s} \cos \frac{(2i-1)m\pi}{s} = 0.$$

Taking into account the equalities (34)–(38) from Lemma 2.5 it follows that.

Theorem 2.3 If $m = 0, 1, ..., s - 1, s \in N^*$, then

(39)
$$J_{2s,2m}^{+} = \begin{cases} \frac{\pi}{2} \cdot a_0(p), \ m = 0\\ 0, \ m = \overline{1, s - 1} \end{cases},$$

(40)
$$J_{2s,2m}^{-} = \begin{cases} -\frac{\pi}{2} \cdot a_0(p), \ m = 0\\ 0, \ m = \overline{1, s - 1} \end{cases}.$$

Using the results from the Theorem 2.3 we conclude with

Theorem 2.4 If $m = 0, 1, ..., s - 1, s \in N^*$, then

$$J_{2s,2m} = 0 .$$

110 Adrian Branga

3. Suppose that n is odd, n = 2s + 1, $s \in N^*$, and k is odd, k = 2m + 1, $m = 0, 1, \ldots, s - 1$.

Likewise that in section 2 it follows that

Theorem 2.5 If $m = 0, 1, ..., s - 1, s \in N^*$, then

$$J_{2s+1,2m+1} = 0 .$$

From Theorem 2.2, 2.4, 2.5 and relation (5) we conclude with

Theorem 2.6 $\widetilde{T}_n(x)$ is the unique solution of the extremal problem (1).

References

- [1] Bernstein S., Sur les polynomes orthogonaux relatifs à un segment fini, Journ. de Math., tome IX, 1930, p.127–137.
- [2] Ghizzetti A., Ossicini A., *Quadratere formulae*, Birkhäuser Verlag, Basel, 1970.
- [3] Lupaş A., The Approximation by Means of Some Linear Positive Operators, Approximation Theory, Proc. International Dortmund Meeting, IDoMat 95, Akademic Verlag, Vol.86, p.201–230.
- [4] Szegö G., Orthogonal Polynomials, Amer. Math. Soc., Colloquium Publ., vol.23, Fourth edition, 1978.

Department of Mathematics,

Faculty of Sciences,

University "Lucian Blaga" of Sibiu,

Dr. Ion Ratiu 5-7, Sibiu, 550012, Romania

E-mail address: adrian_branga@yahoo.com