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Abstract

Our aim in this paper is to find some developments in Chebyshev

series and using these to prove that min ||Q,|, = ||fn|]p, where
ne n

To(z) = 2n#_lcos(n arccos ) is the n-th Chebyshev monic polyno-

mial.
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1 Introduction

Let II,, be the set of all real monic polinomials and L2[—1, 1],

1 < p < oo, the Lebesque linear space with the weight w(x) =

1 1/p
endowed with the norm || f||, = [f |f(t)\pw(t)dt} :
21
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Theorem 1.1 The extremal problem

(1) ||Qn||p - mina Qn € ﬁna

has an unique solution.

Proof. It is known that the Lebesque normed linear space L?[—1,1] is

strict convex for 1 < p < oo.

Lemma 1.1 The extremal problem (1) is equivalent with the following prob-

lem:
m 1 P
(2) / ST €08 nt + Z a; - cosit| dt — min ,
9 i=0

where a = (ag, ...,a,_1) € R™
Proof. {Ty,...,T,} represents a basis in ﬁn, hence there is
a = (ag,...,a,—1) € R" so that:

_ 1 n-!

Qn(2) = oy - Tulz) + > ;- Ti(x) .

i=0
Therefore
N 7 . _ » 1/p
1Qnll, = / ST €08 nt + Z a; - cosit| dt
i=0

0

Further we consider the function ¢ : R™ — R be the function

A n—1 p
1
(3) olag, ..., a, 1) = / 1 -cosnt+2ai~cosit dt.
0 i=0
Hence
™ _ p
a 1 n—1
—(ag,...,Qp_1) =p- —— - cosnt + a; - cos it
a;i gn—1 .
(4) 0 =0

n—1

1

-Sgn [2n1 -Cosnt+2ai-cosz't] -cosktdt , k=0,1,...,n— 1.
i=0
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0
If we shall prove that ai(a*) =0,k=0,1,...,n— 1, where
a

k
a* = (0,...,0) € R", using Theorem 1.1 and Lemma 1.1 we deduce that

T, (z) is the unique solution of the extremal problem (1).

Easily it obtains

a ™
(5) %(a*) = 4571 . /\cos nt[P~! . sgnfcosnt] - cos kt dt
‘ 0
and we denote:
(6) Ik = / | cosnt|P~! - sgn[cosnt] - cos kt dt
0

where £ =0,1,....n — 1.

2 Main results

Further for f,¢g € C[0,1] and a > —1 let consider the following inner
product
t*(1 —t)~
a+1l,a+1)

(oo = [ F090)5

Lemma 2.1 (see [3]) If z € [0,1], —o0 < —4\ < min(0, 2a + 1), then

DR (@ (o

y BMA+a+1l,a+1)

(7) ° T Bla+1,a+1)

NE

(2),

b
Il

0

B(a,b) is the "beta” function, a > —1,b > —1,
(g =clc+1)...(c+k—=1),k=1,2,...,(c)p =1,ceR,

“ 1,k=0
(8) W= 2k+2a+1 (20+2)
k+2a+1 k!

L k=1,2,...
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(9) 0\ (2) = R\ (22 — 1) is the ultraspherical polynomials,

with the condition that the series converges uniformly on [0, 1].
In addition

o) (a 0,k #7
(10) <(JO§€)7(¢0§ )>a:{Lk_-'
7}(;)7 =J

Lemma 2.2 Ifz € [0,1], A > 0 then

0o >\/2 k'

2Ar Zr +k+ y e TR )
=0

N>

(11) z

where T (z) is the k-th Chebyshev polynomial on [0,1] and

[ 1Lk=0
=Y o k=12. "

with the condition that the series converges uniformly on [0, 1].
In addition

(12) <Tk,z;->;—{ T
"’

Proof. In (7) we consider A := 3, & := —1 and using (8)-(10) we deduce
(11) and (12).
Lemma 2.3 If A > 0 then

1 A2

d (o +1 !

(13)/ B L — Hatl): GO o

/ 2(1=2) 2F(§+1)-F(2+1+3)

Proof. From (11), (12) we find

- A+ ()1
<Z ’7}(2)>;_2Ar(§+1) RNCEREEY

and using the definition of inner product we obtain (13).
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Further for f, g € C[—1,1] we use the following inner product

dt
Vi—&

(f.9) = / f(Hg(t)

We consider the following development in Chebyshev series

[e.9]

(14) 2 = (N - Til2), 2 € [-1,1], A > 0,
k=0

where

1

15 )= (BN TE) = 2 [ EPTG)

-1

dz

Substituting z = —¢ in (15) and using the relation

Ti(~t) = (=)' Tk (t),

we find
(16) 02j+1<)\) :O,kZO,l,...,
hence ~
(17) 2 = ean(N) - Tur(2),
k=0

where )

2 A dz
(18) (V) = =y / PT() s

It is known that

hence
(19) Tor(2) = Ti(To(2)) = T(22* — 1) .

V1—22'
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Using (19) in (18) and substituting 2% = ¢ we obtained

1

(20) Con(N) = %% : / téT,j(t)% .

From equalities (13), (17) and (20) we conclude with

Lemma 2.4 If A > 0, z € [—1,1] we have the following development in
Chebysheuv series

(21) 2|} = ZC% Tok(z

where

(22) () = e TATD (*?) - k!

2T (3+1) - I'(3+1+k)’

The previous result allow us to obtain:

k=0,1,....

Theorem 2.1 If1 < p < oo the following equality holds

(23) T, ()P = ao(p) +Za] Tyn(z), z € [~1,1]
(24) | cosnt|P~! = ag(p) + Za] -cos(2jnt), t € [0.7] ,
where
r(p rp)-(7)-40
(25)a0(p) = P ay(p) = ! J=t2.

271 (B7) 27T (B7) T (B + )
Proof. In (21) we consider A:=p—1,1 <p<oo, z:=T,(z), x € [-1,1]
and we find (23). If we consider in (23) ¢ := arccosz, t € [0, 7] we deduce
(24).

Further we consider the following situation:

1. Suppose that

niseven, n=2s,s € N*, and kisodd, k=2m+1, m=0,s — 1,
ornisodd, n=2s+1,s€ N, and k is even, k = 2m, m =0, s.

Substituting in (6) t = 7 — = we deduce
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Theorem 2.2 I[fn=2s, s€e N*, andk=2m+1, m=0,s—1, or
n=2s+1,s€ N, and k =2m, m =0, s we have

(26) J25,2m+1 =0 and J2s+1,2m = 0.

2. Suppose that n is even, n = 2s, s € N*, and k is even, k = 2m,
m=0,s—1.

Let t; = (21;1)”, i = 1,2s, be the zeros of cos(2st) on [0, 7] and tq = 0,

losy1 = .
It is known that

s

(27) COS(28t> > 0, forte U (t2i,t2i+1)
i=0
and
(28) cos(2st) <0, fort € U (tai_1,t2) -
i=1
Therefore
(29> J2S72m = J2+s,2m + Jis,Qm
where
t2it1
(30) I3 om = Z / (cos2st)P~! - cos 2mt dt,
=0 t2q
s t2;
(31) Jogom = — Z / (— cos 2st)P~! - cos 2mt dt.
i=1

T t2ioa

From (24) it follows that
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Lemma 2.5 [fm=0,1,...,s—1, s € N*, then
s t2i4+1
T om = ao(p) - Z / cos(2mt)dt+
i=0
(32> . t27;+1 to;

+ Z a;j(p) Z / cos(4jst) - cos(2mt)dt ,
j=1 i=0

Josom = Z / cos(2mt)dt—
Loie
12 ”
- Z a;(p Z / cos(4jst) - cos(2mt)dt .
i=1,7

(33)

After an easily computation we obtain the results.

Lemma 2.6 Ifi=0,...,5, m=0,...,s—1, s € N*, then

o i=0,5, m=0

t2i+1 4s’
T i=1,5—1, m=0
(34)/ cos(2mt)dt = ¢ 2 , -
s-singr 1 =0,5 m=1s—1
t2; 1 . 2 .
E-sm"%—f-cos%,z-ls I, m=1,s—1

Lemma 2.7 Ifi=0,...,s, m=0,...,s—1,s€ N*, j=1,2,..., then

t2i+1

cos(4jst) - cos(2mt)dt =

t2;

0,i=0,5, m=0

(35) |
(=1 m  omm .
— m-sm—, Z:O,S, m:178—1
-1 j+1 2
(CD7Tm |y T T —T,s—1, m=T1,5—1.

-~ .sin — - cos
47252 — m? 2s
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Lemma 2.8 Ifi=1,...,s, m=0,...,s—1, s € N*, then

to; —_—
moi=T1 —
(36)/ cos(2mt)dt = { 2s” Z‘ W;S’ m(%_l)mw —
-sin X - cos =", i = 1,5, m

t2i—1

=1,s—1.

Lemma 2.9 Ifi=1,...,s, m=0,...,s—1,se€ N*, j=1,2,..., then

t2;

cos(4jst) - cos(2mt)dt =

(37> o t2i—1
0,2=1,s, m=0
= -1 Jj+1 2t — 1 N
(SIS PR G LSS s S gy
45252 —m 2s S

Lemma 2.10 If m=0,1,...,s—1, s € N*, then

S S

27 21— 1
(38) g cos T — 0 and E COSM = 0.
s
i=1 =1

S

Taking into account the equalities (34)—(38) from Lemma 2.5 it follows
that.

Theorem 2.3 Ifm=0,1,...,s—1, s € N*, then

T
—-ap(p), m=20
(39) Tham={ 2 W ,
’ 0, m=1,s—1
T
——-ap(p), m=0
(40) Jgs,zmz{ 3 ) |

0, m=1,s—1
Using the results from the Theorem 2.3 we conclude with
Theorem 2.4 I[fm=0,1,...,s —1, s € N*, then

(41) Jasom =0 .
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3. Suppose that n isodd, n =2s+1, s € N*, and k is odd, k =2m +1,
m=20,1,...,s —1.

Likewise that in section 2 it follows that
Theorem 2.5 [fm=0,1,...,s—1, s € N*, then
(42) Jost12m+1 =0 .
From Theorem 2.2, 2.4, 2.5 and relation (5) we conclude with

Theorem 2.6 T,,(x) is the unique solution of the extremal problem (1).
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