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Abstract
The main of this paper is to establish an Ostrowski type inequality

by using a mean value theorem.
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1 Introduction

The following result is known in the literature as Ostrowski’s inequality [3]:
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where f : [a,b] — R is continuous on [a,b] and differentiable on (a,b) and

whose derivative f' : (a,b) — R is bounded on (a,b), i. e.
1/l = sup [f(£)] < oo.
te(a,b)

Many researchers have given considerable attention to the inequality (1)
and several generalizations, extensions and related results have appeared in
the literature.

The main aim of this paper is to establish an Ostrowski type inequality

by using a mean value theorem (see [2] and [5]).

2 Statement and results

In [5] the author has proved the following mean value theorem:

Theorem 2.1 Let f : [a,b] — R be continuous on [a,b] and differentiable
on (a,b) and & € (a,b) with

1) = f(a)

pe =1

For every M(«a, 3), a ¢ [a,b],

min{yhyZ} S 6 S max{yb 92}7

there exists a point ¢ in (a,b) such that

f’(c) _ ﬂ_ f(C)’

where yy = f(a) + (o —a) f'(§), y2 = [(§) + (@ = ) f(§).

In the proofs of our results we make use this mean value theorem.

The following result holds.
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Theorem 2.2 Let f : [a,b] — R be continuous on [a,b] and differentiable

n (a,b). Then for any x € [a,b] we have the inequality

b
a+b oa—x
) o] i+ 52 [ ro <
xa+b2
.
<yt 5= |- If +1f .

where o ¢ [a,b] and I(t) = o —t, t € [a,]].

Proof. Applying the theorem 2.1 for 3 = y;, we obtain that for any

x,t € |a, b, there is a ¢ between z and ¢ such that

£@) + (- T g ) 1 (o a0)
We have
6)+ (=@ < sup 1700+ (0= 1)'0)
—f+1f

where [(t) = a —t, t € [a,b].

Hence

@)+ -0 0D <y

|t = 2)f(z) + (= 2)[f() = f@) < [t = 2| |If +1f ]l »
|t —a)f(z) + (a—z)f(O)] < |t — x| |If + 1

Integrating over t € [a, b], we get

/bt—a dt + oz—x)/bf(t)dt

b
SWﬂHfM-/H—ﬂ&
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We observe that

B - a?
/ —(b—a)z, t>z
=g 2
‘ L ;a +(b—a)z, t<zx
Next
bz_az_(b—a)x:(x_b)Q_(”;_a)zS(ﬂf—a)2+(a:—b)27
2 9 5
s _(@—af—(@-b? _ (@—a?+(z-b)°
- +(b—a)r = . < !
Hence
b ( P+ (x—0b)?% 1 L\2
/|t—x|dt< ; Z—(b—a)2—|-(x_ . )
Of (3) we deduce
B2 — 2 b
l ;a _a(b—a)]f@)—i-(oz—x)/f(t)dtS

1 a+b\’
and finally
b
a+b a—x
- <
] s+ 52 [t <
a+b\?
1 T — 5 ,
<lit|—5—| |- If +Ufl-
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Remark 2.1 If 0 ¢ [a,b], then for o = 0 we obtain the Dragomir’s in-

equality (see [1]):

a—gb‘fix) _bia/abf(t)dt' <

a+b\ 2

xr —

1 2
A __ 2 . Tdm
e e R R
where [(t) = —t, t € [a,]].

The following interesting particular case holds.

Corollary 2.1 With the assumptions in Theorem 2.2, we have

(4) f(“;b) —bia/bf(t)dt <

b—a
a+b

1S+ 1f o

4

—

for any o & [a, b].

3 AN APPLICATION

Using an idea of [1] we consider the division of the interval [a,b] given by

Aia=xg<t1<...<Tp_1 <xp=>.

Let & be a sequence of intermediate points, &; € [x;, x;41], ¢ = 0,n — 1. We

define the quadrature

(5) Sa(f, &) = Z éf(—&)a {le; . a(zip — )| =
i=0 >
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(l‘z—l-l + x; . Oé) hz
:0

MH

where hz = Xjyr1 — X5

We denote
b
(6) /f@ﬁzSMﬁ®+RMﬂ®

where Sa(f,&;) is as defined in (5). In the following result we obtain an

estimate for the remainder Ra(f,&;).

Theorem 3.1 Assume that f : [a,b] — R is continuous on [a,b] and dif-

ferentiable on (a,b). Then we have

(7) |Ra(f, &) Hf+wmo§:#

‘_2h

where h = min{|a — al, |b — «|}.

Proof. Applying the theorem 2.2 on the interval [z;, ;. 1] for the interme-

diate points &;, to obtain

/f £)dt — ” (xiﬂ;xi—a) hi| <

) ¢ Tiy1+ Z;
h: 1 i 9
i - . LT co-
|z ; 17 +1f)
But |¢; — 902+12+ T; < Iz‘+12 x and

& — af = min{la — af, b — af}.
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Hence
Ti+1

/ ftydt — £f(_£2l (xi“; & —a) hi| <

1
< — Lf'||o - B2

Summer over ¢ from 0 to n — 1 we deduce

b
— f(&) (Tig1+
/f(t)dt_;&—a( 2 _Oé)his

n—1

1

<o I+ 1 e Y0
1=0

SO

n—1
|Ra(f, &) < %anLlf'Hoo : th
=0

b— .
Remark 3.1 For h; = —a, 1=0,n—1 we get
n

bh— 2
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