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Abstract

In this paper we define two variable q-l-function. By applying

Hankel’s contour and Cauchy-Residue Theorem, we prove that this

function interpolates generalized q-Euler numbers at negative inte-

gers. The main purpose of this paper is also to construct p-adic

q-Euler measure on Zp and to give applications of this measure.

Furthermore, we obtain relations between p-adic q-integral, p-adic

q-Euler measure and the q-Euler numbers and polynomials.
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1 Introduction, definitions and notations

In this section, we give some notations and definitions, which are used in

this paper.

Let p be a fixed odd prime. Throughout this paper Zp, Qp, C and Cp

will respectively denote the ring of p-adic rational integers, the field of p-

adic rational numbers, the complex number field and the completion of the

algebraic closure of Qp. Let vp be the normalized exponential valuation of

Cp with |p|p = p−vp(p) = 1/p, cf. ([3], [4], [5]). When we talk of q-extension,

q is variously considered as an indeterminate, either a complex q ∈ C, or a

p-adic number q ∈ Cp. If q ∈ C, we normally assume |q| < 1. If q ∈ Cp,

then we assume |q − 1|p < p−
1

p−1 , so that qx = exp(x log q) for |x|p ≤ 1, cf.

([6], [7], [21]).

For a fixed positive integer d with (p, d) = 1, set

Xd = lim
←
N

Z/dpNZ, X1 = Zp,

X∗ = ∪
0<a<dp
(a,p)=1

(a + dpZp),

a + dpNZp =
{
x ∈ X : x ≡ a(moddpN)

}
,

where a ∈ Z satisfies the condition 0 ≤ a < dpN , cf. ([21], [15]).

For a uniformly differentiable function f at a point a ∈ Zp we write

f ∈ UD(Zp), if the difference quotient

Ff (x, y) =
f(x) − f(y)

x − y
,
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has a limit f́(a) as (x, y) → (a, a). For f ∈ UD(Zp), an invariant p-adic

q-integral was defined by

Iq(f) =

∫
Zp

f(x)dμq(x) = lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx,

where

[x]q =

⎧⎨
⎩

1−qx

1−q
, q �= 1

x , q = 1
,

and

[x]−q =
1 − (−q)x

1 + q
,

The modified p-adic q-integral on Zp is defined by

(1) I−q(f) =

∫
Zp

f(x)dμ−q(x),

where dμ−q(x) = lim
q→−q

dμq(x) cf. ([10], [2], [7], [8], [3], [4], [9], [11], [6], [21],

[16]).

The classical Euler numbers are defined by the following generating func-

tion
2

et + 1
=

∞∑
n=0

En
tn

n!
, |t| < π,

From the above function, we have

E0 = 1, E1 =
−1

2
, E2 = 0, E3 =

1

4
, · · · .

These numbers are interpolated by the following function at the negative

integers:

(2) ζE(s) =
∞∑

n=1

(−1)n

ns
, s ∈ C.
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This function interpolates Euler numbers at negative integers. For s = −n,

n ∈ Z+, we have

ζE(−n) = En,

cf. (see for detail [12], [22], [21], [3], [4], [5], [6], [7], [21], [1], [10], [2], [8],

[11], [14], [13], [17], [18], [19], [20]).

The main motivation of this paper are summarized as follows:

In Section 2, we define two variable q-l-functions. By using Hankel’s

contour and Cauchy-Residue Theorem, we find explicit values of the two

variable q-l-functions at negative integers.

In Section 3, we construct p-adic q-Euler measure on Zp. By using

this measure, we prove relations between p-adic q-integral, p-adic q-Euler

measure and the q-Euler numbers and polynomials. We also give some

applications as well.

2 Interpolation functions of the q-Euler num-

bers and polynomials on C

In this chapter, we assume that q ∈ C, with |q| < 1.

q-extension of Euler polynomials, En,q(x) are defined by

(3) Fq(t, x) =
2etx

qet + 1
=

∞∑
n=0

En,q(x)
tn

n!
cf. [14].

By using (3), and Taylor series of etx, we have

∞∑
n=0

En,q
tn

n!

∞∑
n=0

xn tn

n!
=

∞∑
n=0

E(h)
n,q (x)

tn

n!
.

By Cauchy product in the above, we have the following theorem:
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Theorem 1. ([14]) Let n ∈ N. Then we have

(4) En,q(x) =
n∑

k=0

⎛
⎝ n

k

⎞
⎠ xn−kE

(h)
k,q (x).

Theorem 2. ([14])(Distribution Relation) For d is an odd positive integer,

k ∈ N, we have

(5) Ek,q(x, q) = dk

d−1∑
a=0

(−1)aqaEk,qd

(
x + a

d

)
.

By applying Mellin transform to (3), we define Hurwitz type zeta func-

tion as follows:

(6) ζq(s, x) =
1

Γ(s)

∫ ∞

0

ts−1Fq(−t, x)dt,

(for detail see also [14]).

This function interpolates En,q(x) polynomial at negative integers. By

using the complex integral representation of generating function of the poly-

nomials En,q(x), we have

1

Γ(s)

∮
C

ts−1Fq(−t, x)dt =
∞∑

n=0

(−1)nEn,q(x)

n!

1

Γ(s)

∮
C

tn+s−1dt,

where C is Hankel’s contour along the cut joining the points z = 0 and

z = ∞ on the real axis, which starts from the point at ∞, encircles the

origin (z = 0) once in the positive (counter-clockwise) direction, and returns

to the point at ∞, (see for detail [23], [11], [19], [21]). By using (6) and

Cauchy-Residue Theorem, we arrive at the following theorem:

Theorem 3. Let k ∈ N. Then we have

(7) ζq(−k, x) = Ek,q(x).
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Generalized q-Euler polynomials are defined by means of the following

generating function [14]:

(8)

Fq(t, x, χ) =
2
∑d−1

a=0(−1)aχ(a)et(a+x)qa

qetd + 1
=

∞∑
n=0

En,χ,q(x)
tn

n!
, |t + log q| <

π

d
.

Remark 1. From the above generating function we assume that d is an odd

integer, we have

Fq(t, x, χ) =
2
∑d−1

a=0(−1)aχ(a)et(a+x)qa

qetd + 1
(9)

= 2
d−1∑
a=0

(−1)aχ(a)et(a+x)qa

∞∑
n=0

(−1)nqnetdn

= 2
∞∑

m=0

(−1)mχ(m)qme(m+x)t

By applying Mellin transform to (9), we define two variable q-l-function

as follows:

lq(s, χ; x) =
1

Γ(s)

∫ ∞

0

ts−1Fq(−t, x, χ)dt(10)

= 2
∞∑

n=0

(−1)nχ(n)qn

(n + x)s
.

Definition 1. Let s ∈ C. We define

lq(s, χ; x) = 2
∞∑

n=0

(−1)nχ(n)qn

(n + x)s
.

Observe that if x = 1, then lq(s, χ; x) reduces to

lq(s, χ; x) = 2
∞∑

n=1

(−1)nχ(n)qn

ns
.
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This function interpolates q-generalized Euler numbers at negative integers.

And

lim
q→1

lq(s, χ) = l(s, χ) = 2
∞∑

n=1

(−1)nχ(n)

ns
,

this function interpolates generalized Euler numbers at negative integers.

Substituting χ ≡ 1 into the above, then the function l(s, 1) reduces to (2).

By using the complex integral representation of generating function in

(9), we have

1

Γ(s)

∮
C

ts−1Fq(−t, x, χ)dt =
∞∑

n=0

(−1)nEn,χ,q(x)

n!

1

Γ(s)

∮
C

tn+s−1dt,

where C is Hankel’s contour along the cut joining the points z = 0 and

z = ∞ on the real axis, which starts from the point at ∞, encircles the

origin (z = 0) once in the positive (counter-clockwise) direction, and returns

to the point at ∞. By using (10) and Cauchy-Residue Theorem, we arrive

at the following theorem:

Theorem 4. Let k ∈ N. Then we have

lq(−k, χ; x) = En,χ,q(x).

Remark 2. Proofs of Theorem 2 and Theorem 3 were given by Ozden and

Simsek. Their proofs are related to derivative operator on generating func-

tions of the q-Euler polynomials and generalized q-Euler polynomials.

3 p-adic q-Euler measure on X

In this section, we assume that q ∈ Cp with |q − 1|p < p−
1

p−1 , so that

qx = exp(x log q) for |x|p ≤ 1. Let χ be a primitive Dirichlet character with
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a conductor d(= odd) ∈ N.

By using (5), we define a distribution on X. By using this distribution,

we construct a measure on X. We give relations between p-adic q-Euler

measure, p-adic q-integral and q-Euler numbers and polynomials.

Let N , k and d (= odd) be positive integers. We define μ∗
k = μ∗

k,q;E as

follows:

(11) μ∗
k(a + dpNZp) = (−1)a (dpN)k−1qaEk

(
a

dpN
, qdpN

)
.

Now we show that μ∗
k(a + dpNZp) is a distribution on X as follows:

By using (5) and (11), we obtain

p−1∑
j=0

μ∗
k(a + jdpN + dpN+1Zp)

=

p−1∑
j=0

(−1)a+jdpN

(dpN+1)k−1q
a+jdpN

Ek

(
a + jdpN

dpN+1
, qdpN+1

)

= (−1)a q
a

(dpN+1)k−1

p−1∑
j=0

(−1)jdpN

q
jdpN

Ek

( a
dpN + j

p
, (qdpN

)p

)

= (−1)a q
a

(dpN)k−1pk−1

p−1∑
j=0

(−1)j (q
dpN

)jEk

( a
dpN + j

p
, (qdpN

)p

)

= (−1)a q
a

(dpN)k−1pk−1Ek

(
a

dpN
, qdpN

)

= μ∗
k(a + dpNZp).

Therefore we easily arrive at the following theorem

Theorem 5. Let N , k and d (= odd) be positive integers, then

μ∗
k(a + dpNZp) = (−1)a (dpN)k−1qaEk

(
a

dpN
, qdpN

)

is a distribution on X.
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Substituting f(x) = qxetx into (1), we obtain (3) cf. [14]. By using (3),

we have

(12)
2etx

qet + 1
=

∞∑
n=0

(−1)nqnet(n+x).

From the above series and Theorem 5, we arrive at the following theorem:

Theorem 6. If q ∈ Zp with |1 − q|p ≤ 1, then μ∗
k is a measure on X.

Proof. From Theorem 5, (5) and (12) we easily arrive at the desired result.

Theorem 7. For any positive integer k, we have∫
Zp

dμ∗
k
(x) = Ek(q).

Proof. By Theorem 6 we have

∫
Zp

dμ∗
k
(x) = lim

N→∞

dpN−1∑
x=0

μ∗
k
(x + dpNZp)

= lim
N→∞

d−1∑
a=0

pN−1∑
j=0

μ∗
k
(a + jd + dpNZp).

By using Theorem 5, we get

= lim
N→∞

d−1∑
a=0

pN−1∑
j=0

(−1)a+jd(dpN)k−1qa+jdEk(
a + jd

dpN
, qdpN

)

=
d−1∑
a=0

(−1)aqadk−1 lim
N→∞

(pN)k−1

pN−1∑
j=0

(−1)j(qj)dEk(
a
d

+ j

pN
, (qd)pN

)

=
d−1∑
a=0

(−1)aqadk−1Ek(
a

d
, qd)

= Ek(q).

Thus we complete the proof.
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Theorem 8. Let χ be the Dirichlet’s character with an odd conductor d ∈
N. Then we have ∫

X

χ(x)dμ∗
k
(x) = Ek,χ(q).

Proof.

∫
X

χ(x)dμ∗
k
(x) = lim

N→∞

dpN−1∑
x=0

χ(x)μ∗
k
(x + dpNZp)

= lim
N→∞

d−1∑
a=0

pN−1∑
j=0

χ(a + jd)μ∗
k
(a + jd + dpNZp)

= lim
N→∞

d−1∑
a=0

χ(a)

pN−1∑
j=0

(−1)a+jdqa+jd(dpN)k−1Ek(
a + jd

dpN
, qdpN

)

= dk−1

d−1∑
a=0

(−1)aqaχ(a)

× lim
N→∞

(pN)k−1

pN−1∑
j=0

(−1)j(qd)jEk(
a
d

+ j

pN
, (qd)pN

)

= dk−1

d−1∑
a=0

(−1)aqaχ(a)Ek(
a

d
, qd)

= Ek,χ(q)

Remark 3. By using μ∗
k
on X∗, and

∫
X∗ f(x)χ(x)dμ∗

k
(x), we may have many

applications related to p-adic l-function and q-generalized Euler numbers.
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