On a diophantine equation ${ }^{1}$ Dumitru Acu

Abstract

In this note we study the diophantine equation (1).

\section*{2000 Mathematical Subject Classification:11D61}

In this note we study in positive integer numbers following the diophantine equation:

$$
\begin{equation*}
2^{x}+5^{y}=z^{2} \tag{1}
\end{equation*}
$$

Theorem 1. The diophantine equation (1) has exactly two solutions in nonnegative integers $(x, y, z) \in\{(3,0,3),(2,1,3)\}$.

Proof. If $x=0$, then we have the diophantine equation

$$
5^{y}=y^{2}-1
$$

or

$$
(z-1)(z+1)=5^{y},
$$

where $z-1=5^{u}$ and $z+1=5^{y-u}, y>2 u, u \in \mathbb{N}$.

[^0]From here, we obtain:

$$
5^{y-u}-5^{y}=2
$$

or

$$
5^{u}\left(5^{y-2 u}-1\right)=2
$$

where $u=0$ and $5^{y}=3$, which is impossible.
If $y=0$, then we have the diophantine equation

$$
z^{2}-1=2^{x}
$$

or

$$
(z-1)(z+1)=2^{x},
$$

where $z-1=2^{v}$ and $z+1=2^{x-v}, x>2 v, v \in \mathbb{N}$.
Form here, we obtain

$$
2^{x-v}-2^{v}=2
$$

or

$$
2^{v}\left(2^{x-2 v}-1\right)=2
$$

where $v=1$ and $2^{x-2}=2$, that is $v=1$ and $x=3$.
Therefore $x=3, y=0, z=3$.
Now, we consider $x \geq 1$ and $y \geq 1$.
It follows from (1) that the number z is odd and it is not divisible by 5 .
If $z \equiv \pm 1(\bmod 5)$ then we have $z^{2} \equiv 1(\bmod 5)$ and if $z \equiv \pm 2(\bmod 5)$ it results $z^{2} \equiv 4(\bmod 5) \equiv-1(\bmod 5)$.

But, we have

$$
2^{2 k}=4^{k}=(5-1)^{k} \equiv(-1)^{k}(\bmod 5)
$$

and

$$
2^{2 k+1}=2 \cdot 4^{k} \equiv 2 \cdot(-1)^{k}(\bmod 5), k \in \mathbb{N} .
$$

It results that the number x is even.

Now, we consider $x=2 k, k \in \mathbb{N}$.From (1) we have

$$
z^{2}-2^{2 k}=5^{y}
$$

or

$$
\left(z-2^{k}\right)\left(z+2^{k}\right)=5^{y}
$$

where $z-2^{k}=5^{w}$ and $z+2^{k}=5^{y-w}, y>2 w$. From here, we obtain

$$
5^{w}\left(5^{y-2 w}-1\right)=2^{k+1}
$$

which implies $w=0$ and

$$
\begin{equation*}
5^{y}-2^{k+1}=1 \tag{2}
\end{equation*}
$$

The diophantine equation (2) is a diophantine equation by Catalan's type

$$
a^{b}-c^{d}=1
$$

which has in positive integer numbers (>1) only the solutions $a=3, b=$ $2, c=2$ and $d=3([3],[6],[7])$.

It results the diophantine equation (2) has the solution only if $y=1$. Then we have $2^{k+1}=2^{2}$, where $k=1$. Therefore $x=2, y=1, z=3$.

In concluding, the diophantine equation (1) has the solutions: $(x, y, z) \in$ $\{(3,0,3),(2,1,3)\}$.

References

[1] Andreescu, T., Cercetări de analiză diofantică şi aplicaţii, Teza de doctorat, 2003, Timisoara (in Romanian).
[2] Andreescu, T., Andrica, D., O introducere in studiul ecuaţiilor diofantiene, Ed. GIL, 2002 (in Romanian).
[3] Cucurezeanu, I., Ecuaţii în numere intregi, Ed. Aramis, Bucuresti,2006(in Romanian).
[4] Cucurezeanu, I., Pătrate şi cuburi perfecte de numere întregi, Ed. GIL,2007(in Romanian).
[5] Mordell, L.J., Diophantine Equations, Academic Press, London, New York, 1969.
[6] Sierpinski, W., Elementary theory of numbers, Warszawa, 1964.
[7] Sierpinski, W., Ce ştim şi ce nu ştim despre numerele prime?, Ed. Ştiinţifică, Bucureşti, 1996(in Romanian).

Department of Mathematics,
Faculty of Sciences,
University "Lucian Blaga" of Sibiu,
Dr. Ion Ratiu 5-7, Sibiu, 550012, Romania
E-mail: acu_dumitru@yahoo.com

[^0]: ${ }^{1}$ Received 12 December, 2007
 Accepted for publication (in revised form) 25 December, 2007

