A criteria of ϕ-like functions ${ }^{1}$

Sushma Gupta,Sukhjit Singh and Sukhwinder Singh

Abstract

In this paper, we obtain some sufficient conditions for a normalized analytic function to be ϕ-like and starlike of order α.

2000 Mathematical Subject Classification: Primary 30C45, Secondary 30C50.
Key words: ϕ-like function, starlike function, differential subordination.

1 Introduction

Let \mathcal{A} be the class of functions f which are analytic in the unit disc $E=$ $\{z:|z|<1\}$ and are normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Denote by $S^{*}(\alpha)$ and $K(\alpha)$, the classes of starlike functions of order α and convex functions of order α respectively, which are analytically defined as follows

$$
S^{*}(\alpha)=\left\{f(z) \in \mathcal{A}: \Re \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in E\right\}
$$

and

$$
K(\alpha)=\left\{f(z) \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in E\right\}
$$

[^0]where α is a real number such that $0 \leq \alpha<1$. We shall use S^{*} and K to denote $S^{*}(0)$ and $K(0)$, respectively which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.
Let f and g be analytic in E. We say that f is subordinate to g in E, written as $f(z) \prec g(z)$ in E, if g is univalent in $E, f(0)=g(0)$ and $f(E) \subset g(E)$. Denote by $S^{*}[A, B],-1 \leq B<A \leq 1$, the class of functions $f \in \mathcal{A}$ which satisfy
$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, z \in E .
$$

Note that $S^{*}[1-2 \alpha,-1]=S^{*}(\alpha), 0 \leq \alpha<1$ and $S^{*}[1,-1]=S^{*}$.
A function $f, f^{\prime}(0) \neq 0$, is said to be close-to-convex in E, if and only if, there is a starlike function h (not necessarily normalized) such that

$$
\Re \frac{z f^{\prime}(z)}{h(z)}>0, z \in E .
$$

Let ϕ be analytic in a domain containing $f(E), \phi(0)=0$ and $\Re \phi^{\prime}(0)>0$, then, the function $f \in \mathcal{A}$ is said to be ϕ-like in E if

$$
\Re \frac{z f^{\prime}(z)}{\phi(f(z))}>0, z \in E
$$

This concept was introduced by L. Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ-like for some ϕ. Later, Ruscheweyh [8] investigated the following general class of ϕ-like functions: Let ϕ be analytic in a domain containing $f(E), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(E)-\{0\}$, then the function $f \in \mathcal{A}$ is called ϕ-like with respect to a univalent function $q, q(0)=1$, if

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), z \in E
$$

In the present note, we obtain some sufficient conditions for a normalized analytic function to be ϕ-like. In [9], Silverman defined the class G_{b} as

$$
G_{b}=\left\{f \in \mathcal{A}:\left|\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}-1\right|<b, z \in E\right\}
$$

and proved that the functions in the class G_{b} are starlike in E. Later on, this class was studied extensively by Tuneski $[4,11,12,13,14,15]$. As particular cases, we obtain many interesting results for the class G_{b}. Most of the results proved by Tuneski follow as corollaries to our theorem.

2 Preliminaries

We shall need following definition and lemmas to prove our results.
Definition 2.1. A function $L(z, t), z \in E$ and $t \geq 0$ is said to be a subordination chain if $L(., t)$ is analytic and univalent in E for all $t \geq 0, L(z,$. is continuously differentiable on $[0, \infty)$ for all $z \in E$ and $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for all $0 \leq t_{1} \leq t_{2}$.
Lemma 2.1 [5, page 159]. The function $L(z, t): E \times[0, \infty) \rightarrow \mathbb{C}$, (\mathbb{C} is the set of complex numbers), of the form $L(z, t)=a_{1}(t) z+\ldots$ with $a_{1}(t) \neq 0$ for all $t \geq 0$, and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$, is said to be a subordination chain if and only if $\operatorname{Re}\left[\frac{z \partial L / \partial z}{\partial L / \partial t}\right]>0$ for all $z \in E$ and $t \geq 0$.
Lemma 2.2 [3]. Let F be analytic in E and let G be analytic and univalent in \bar{E} except for points ζ_{0} such that $\lim _{z \rightarrow \zeta_{0}} F(z)=\infty$, with $F(0)=G(0)$. If $F \nprec G$ in E, then there is a point $z_{0} \in E$ and $\zeta_{0} \in \partial E$ (boundary of E) such that $F\left(|z|<\left|z_{0}\right|\right) \subset G(E), F\left(z_{0}\right)=G\left(\zeta_{0}\right)$ and $z_{0} F^{\prime}\left(z_{0}\right)=m \zeta_{0} G^{\prime}\left(\zeta_{0}\right)$ for some $m \geq 1$.

3 Main Result

Lemma 3.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let q be univalent function such that either $\frac{z q^{\prime}(z)}{q^{2}(z)}$ is starlike in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function p, satisfies the differential subordination

$$
\begin{equation*}
1-\frac{\gamma}{p(z)}+\frac{z p^{\prime}(z)}{p^{2}(z)} \prec 1-\frac{\gamma}{q(z)}+\frac{z q^{\prime}(z)}{q^{2}(z)}, p(0)=q(0)=1, z \in E \tag{3.1}
\end{equation*}
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
Proof. Let us define a function

$$
\begin{equation*}
h(z)=1-\frac{\gamma}{q(z)}+\frac{z q^{\prime}(z)}{q^{2}(z)}, z \in E . \tag{3.2}
\end{equation*}
$$

Firstly, we will prove that $h(z)$ is univalent in E so that the subordination (3.1) is well-defined in E. Differentiating (3.2) and simplifying a little, we get

$$
\frac{z h^{\prime}(z)}{Q(z)}=\gamma+\frac{z Q^{\prime}(z)}{Q(z)}, z \in E
$$

where $Q(z)=\frac{z q^{\prime}(z)}{q^{2}(z)}$. In view of the given conditions, we obtain

$$
\Re \frac{z h^{\prime}(z)}{Q(z)}>0, z \in E .
$$

Thus, $h(z)$ is close-to-convex and hence univalent in E. We need to show that that $p \prec q$. Suppose to the contrary that $p \nprec q$ in E. Then by Lemma 2.2 , there exist points $z_{0} \in E$ and $\zeta_{0} \in \partial E$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta q^{\prime}\left(\zeta_{0}\right), m \geq 1$. Then

$$
\begin{equation*}
1-\frac{\gamma}{p\left(z_{0}\right)}+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}=1-\frac{\gamma}{q\left(\zeta_{0}\right)}+\frac{m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)}{q^{2}\left(\zeta_{0}\right)}, z \in E \tag{3.3}
\end{equation*}
$$

Consider a function

$$
\begin{equation*}
L(z, t)=1-\frac{\gamma}{q(z)}+(1+t) \frac{z q^{\prime}(z)}{q^{2}(z)}, z \in E . \tag{3.4}
\end{equation*}
$$

The function $L(z, t)$ is analytic in E for all $t \geq 0$ and is continuously differentiable on $[0, \infty)$ for all $z \in E$. Now,

$$
a_{1}(t)=\left(\frac{\partial L(z, t)}{\partial z}\right)_{(0, t)}=q^{\prime}(0)(\gamma+1+t)
$$

In view of the condition that $\Re \gamma \geq 0$, we get $|\arg (\gamma+1+t)| \leq \pi / 2$. Also, as q is univalent in E, so, $q^{\prime}(0) \neq 0$. Therefore, it follows that $a_{1}(t) \neq 0$ and
$\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$. A simple calculation yields

$$
z \frac{\partial L / \partial z}{\partial L / \partial t}=\gamma+(1+t) \frac{z Q^{\prime}(z)}{Q(z)}, z \in E .
$$

Clearly

$$
\Re z \frac{\partial L / \partial z}{\partial L / \partial t}>0, z \in E
$$

in view of given conditions. Hence, $L(z, t)$ is a subordination chain. Therefore, $L\left(z, t_{1}\right) \prec L\left(z, t_{2}\right)$ for $0 \leq t_{1} \leq t_{2}$. From (3.4), we have $L(z, 0)=h(z)$, thus we deduce that $L\left(\zeta_{0}, t\right) \notin h(E)$ for $\left|\zeta_{0}\right|=1$ and $t \geq 0$. In view of (3.3) and (3.4), we can write

$$
1-\frac{\gamma}{p\left(z_{0}\right)}+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p^{2}\left(z_{0}\right)}=L\left(\zeta_{0}, m-1\right) \notin h(E)
$$

where $z_{0} \in E,\left|\zeta_{0}\right|=1$ and $m \geq 1$ which is a contradiction to (3.1). Hence, $p \prec q$. This completes the proof of the Lemma.

Theorem 3.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let $q, q(0)=1$, be a univalent function such that $\frac{z q^{\prime}(z)}{q^{2}(z)}$ is starlike in E or, equivalently, $\frac{1}{q(z)}$ is convex in E. If an analytic function $f \in \mathcal{A}$ satisfies the differential subordination

$$
1+\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / \phi(f(z))}-\frac{(\phi(f(z)))^{\prime}}{f^{\prime}(z)} \prec 1-\frac{\gamma}{q(z)}+\frac{z q^{\prime}(z)}{q^{2}(z)}, z \in E
$$

for some function ϕ, analytic in a domain containing $f(E), \phi(0)=0, \phi^{\prime}(0)=$ 1 and $\phi(w) \neq 0$ for $w \in f(E)-\{0\}$, then $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z)$ and $q(z)$ is the best dominant.
Proof. The proof of the theorem follows by writing $p(z)=\frac{z f^{\prime}(z)}{\phi(f(z))}$ in Lemma 3.1.

In particular, for $\phi(w)=w$ and $q(z)=\frac{z g^{\prime}(z)}{g(z)}$ in Theorem 3.1, we obtain the following result.
Theorem 3.2. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let $g \in \mathcal{A}$ be such that $\frac{z g^{\prime}(z)}{g(z)}=q(z)$ is univalent in E. Assume that either $\frac{z q^{\prime}(z)}{q^{2}(z)}$ is starlike
in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function $f \in \mathcal{A}$ satisfies the differential subordination

$$
\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \prec \frac{1-\gamma+z g^{\prime \prime}(z) / g^{\prime}(z)}{z g^{\prime}(z) / g(z)}, z \in E,
$$

then $\frac{z f^{\prime}(z)}{f(z)} \prec \frac{z g^{\prime}(z)}{g(z)}$.

4 Applications to univalent functions

In this section, we obtain a criterion for a normalized analytic function to be ϕ-like. As an application of Theorems 3.1 and 3.2, we obtain some new conditions and also few existing conditions for a function to be in the class S^{*} and $S^{*}(\alpha)$.
When the dominant is $q(z)=\frac{1+A z}{1+B z}$. We observe that q is univalent in E and $\frac{1}{q(z)}$ is convex in E where $-1 \leq B<A \leq 1$. From Theorem 3.1, we deduce the following result.

Theorem 4.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B<A \leq 1$. Let $f \in \mathcal{A}$ satisfy the differential subordination $1+\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / \phi(f(z))}-\frac{(\phi(f(z)))^{\prime}}{f^{\prime}(z)} \prec 1-\gamma \frac{1+B z}{1+A z}+\frac{(A-B) z}{(1+A z)^{2}}, z \in E$,
for some function ϕ, analytic in a domain containing $f(E), \phi(0)=0, \phi^{\prime}(0)=$ 1 and $\phi(w) \neq 0$ for $w \in f(E)-\{0\}$, then $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+A z}{1+B z}, z \in E$.

As an example, if we take $\gamma=i, A=0, B=-1$ in Theorem 4.1, we obtain the following result.
Example 4.1. Let $f \in \mathcal{A}$ satisfy

$$
\left|\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / \phi(f(z))}-\frac{(\phi(f(z)))^{\prime}}{f^{\prime}(z)}+i\right|<\sqrt{2}, z \in E
$$

then $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1}{1-z}, z \in E$.

In particular, for $\gamma=0$ and $A=1, B=-1$, Theorem 4.1, reduces to the following result.
Corollary 4.1. Let $f \in \mathcal{A}$ satisfy the differential subordination

$$
\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / \phi(f(z))}-\frac{(\phi(f(z)))^{\prime}}{f^{\prime}(z)} \prec \frac{2 z}{(1+z)^{2}}, z \in E
$$

for some function ϕ, analytic in a domain containing $f(E), \phi(0)=0, \phi^{\prime}(0)=$ 1 and $\phi(w) \neq 0$ for $w \in f(E)-\{0\}$, then $\operatorname{Re} \frac{z f^{\prime}(z)}{\phi(f(z))}>0, z \in E$.

Note that several such results are available for different substitutions of constants A, B.
For the dominant $q(z)=\frac{1+A z}{1+B z}$, Theorem 3.2 gives us the following result.
Theorem 4.2. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B<A \leq 1$. Let $f \in \mathcal{A}$ satisfy the differential subordination

$$
\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \prec 1-\gamma \frac{1+B z}{1+A z}+\frac{(A-B) z}{(1+A z)^{2}}, \quad z \in E,
$$

then $f \in S^{*}[A, B]$.
Writing $\gamma=1$ in Theorem 4.2, we obtain the following result.
Corollary 4.2. If $f \in \mathcal{A}$ satisfies the differential subordination

$$
\frac{f^{\prime \prime}(z) f(z)}{f^{\prime 2}(z)} \prec 1-\frac{1+B z}{1+A z}+\frac{(A-B) z}{(1+A z)^{2}}, \quad z \in E,-1 \leq B<A \leq 1
$$

then $f \in S^{*}[A, B]$.
Writing $A=0$ in Theorem 4.2, we obtain the following result.
Corollary 4.3. Let $f \in \mathcal{A}$ satisfy

$$
\left|\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}-(1-\gamma)\right|<(1+\gamma) B, z \in E, \gamma \geq 0,0<B \leq 1
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1}{1+B z}, z \in E .
$$

In particular, for $\gamma=1$, in Corollary 4.3, we obtain the following result. Corollary 4.4. Let $f \in \mathcal{A}$ satisfy

$$
\left|\frac{f(z) f^{\prime \prime}(z)}{f^{\prime 2}(z)}\right|<2 B, \quad z \in E, \quad 0<B \leq 1
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1}{1+B z}, \quad z \in E .
$$

The selection of $B=0$ in Theorem 4.2 gives us the following result.
Corollary 4.5. Let $f \in \mathcal{A}$ satisfy
$\frac{1-\gamma+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \prec 1-\frac{\gamma}{1+A z}+\frac{A z}{(1+A z)^{2}}, z \in E, \gamma \geq 0,0<A \leq 1$, then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<A, z \in E
$$

In particular, for $\gamma=0$ in Corollary 4.5, we obtain the following result.
Corollary 4.6. Let $f \in \mathcal{A}$ satisfy

$$
\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)} \prec 1+\frac{A z}{(1+A z)^{2}}, \quad z \in E, 0<A \leq 1
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<A, z \in E .
$$

Taking $\gamma=1$ in corollary 4.5, we obtain the following result.
Corollary 4.7. If

$$
\frac{f(z) f^{\prime \prime}(z)}{f^{\prime 2}(z)} \prec 1-\frac{1}{(1+A z)^{2}}, z \in E, 0<A \leq 1,
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<A, z \in E
$$

Remark 4.1. (i) Writing $\gamma=0$ in Theorem 4.2, we obtain the Theorem 2.3 in [14].
(ii) Writing $A=-1, B=1$ in Theorem 4.2, we obtain Theorem 1 of [15].
(iii) Taking $A=1, B=-1, \gamma=0$ in Theorem 4.2, we obtain Theorem 3 in [4].
(iv) Taking $A=-1, B=1, \gamma=1$ in Theorem 4.2, we get Theorem 1 in [12].
(v) Taking $A=0, \gamma=0$ in Theorem 4.2, we obtain Theorem 1 in [4].
(vi) Writing $A=0, B=-1, \gamma=1$ in Theorem 4.2, we obtain the following result:
If $f \in \mathcal{A}$ satisfies, $\frac{f^{\prime \prime}(z) f(z)}{f^{\prime 2}(z)} \prec 2 z, z \in E$, then $f \in S^{*}(1 / 2)$.
This is an improvement of Corollary 2 proved in [12].
(vii) Taking $A=-(1-2 \alpha), B=1,0 \leq \alpha<1$ in Theorem 4.2, we get the Theorem 3 in [15].
(viii) Writing $A=-(1-2 \alpha), B=1,0 \leq \alpha<1$ and $\gamma=0$ in Theorem 4.2, we obtain Corollary 4(i) in [15].
(ix) Writing $A=-(1-2 \alpha), B=1,0 \leq \alpha<1$ and for $\gamma=1$ in Theorem 4.2, Corollary 4(ii) in [15] follows.
(x) For $B=\frac{1-\beta}{\beta}, 1 / 2 \leq \beta<1$ in Corollary 4.4, we obtain the result of Robertson [7].
(xi) Taking $q(z)=\frac{2 \alpha}{1+z}$ in Theorem 3.2, we obtain Theorem 2 in [15].

References

[1] Brickman, L., ϕ-like analytic functions.I, Bull. Amer. Math. Soc., 79(1973), 555-558.
[2] Bulboaca, T. and Tuneski, N. , New Criteria for Starlikeness and Strongly Starlikeness, Mathematica (Cluj), accepted.
[3] Miller, S. S. and Mocanu, P. T., Differential subordination and Univalent functions, Michigan Math. J. 28(1981), 157-171.
[4] Obradovic, M. and Tuneski, N.,On the Starlike Criteria Defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej. Mat., Vol. 181 No. 24 (2000) 59-64.
[5] Pommerenke, Ch., Univalent Functions, Vanderhoeck and Ruprecht, Götingen, 175.
[6] Ravichandran, V. and Darus, M. , On a criteria for starlikeness, International Math. J., 4(2), 2003, 119-125.
[7] Robertson, M. S., The Michigan Math.J., 32(1985), 13-140.
[8] Ruscheweyh, St., A subordination theorem for ϕ-like functions, J. London Math. Soc., 2, 13(1976), 275-280.
[9] Silverman, H. , Convex and starlike criteria, Internat. J. Math. Sci. \& Math. Sci., vol. 22 no.1(1999), 75-79.
[10] Singh, V., On some criteria for univalence and starlikeness, Indian J. Pure. Appl. Math. 34(4),(2003) 569-577.
[11] Singh, V. and Tuneski, N. , On a Criteria for Starlikeness and Convexity of Analytic Functions, submitted.
[12] Tuneski, N., On certain sufficient conditions for starlikeness, Internat. J. Math. \& Math. Sci., (23) 8 (2000), 521-527.
[13] Tuneski, N., On Some Simple Sufficient Conditions for Univalence, Mathematica Bohemica, Vol. 126 No. 1 (2001) 229-236.
[14] Tuneski, N., On the quotient of the representations of convexity and starlikeness, Mathematische Nachrichten, 200-203(2003), 248-249.
[15] Tuneski, N., On a criteria for starlikeness of analytic functions, preprint.
Sushma Gupta and Sukhjit Singh
Department of Mathematics
S.L.I.E.T., Longowal-148 106 (Punjab) India

E-mail: sushmagupta1@yahoo.com sukhjit_d@yahoo.com

Sukhwinder Singh
Deaprtment of Applied Sciences
B.B.S.B. Engineering College

Fatehgarh Sahib-140 407 (Punjab) India
E-mail: ss_billing@yahoo.co.in

[^0]: ${ }^{1}$ Received 20 July, 2007
 Accepted for publication (in revised form) 20 December, 2007

