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On the law of large numbers for free
identically distributed random variables1

Bogdan Gheorghe Munteanu

Abstract

A version of law of large numbers for free identically distributed

random variables is considering at this work. It shown that

lim
t→∞

t µ (x : |x| > t) = 0

is a sufficient and necessary condition for the weak law of large num-

bers for the sequence X1, X2, ..., free random variables.
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1 Introduction

Analytic theory of free additive convolution is useful in frame of this article.

The calculation of free additive convolution is based on an analoque of the

Fourier transform first introduced by Voiculescu [6]. We need the version of

1Received 14 July, 2007

Accepted for publication (in revised form) 14 December, 2007

55



56 Bogdan Gheorghe Munteanu

this apparatus which is suitable for the convolution of arbitrary probability

measures [1].

First, some notation. Let C denote the complex field, C
+ and C

− the

upper and lower half plane. We consider

Γα = {z = x + iy : y > 0 and |x| < αy} ,

Γα,β = {z ∈ Γα : y > β} , α, β > 0 .

where α and β are positive numbers.

Given a probability measure µ on R, its Cauchy transform Gµ : C
+ →

C
− is defined as

Gµ(z) :=

∞∫

−∞

µ dx

z − x
= E

(
(z − X)−1

)

The reciprocal Cauchy transform is defined by Fµ : C
+ → C

+, Fµ(z) =

1/Gµ(z).

2 Proof of the main result

First, we would like to formulate the theorem in terms of free convolutions

rather than random variables. To do this, observe that given a self-adjoint

random variable X affiliated with some algebras A and a scalar λ > 0, we

have

µλ X = DλµX

where Dλ is the dilation of a measure µ defined by Dλµ(A) = µ(λ−1A) , (A ⊂
R measurable).

Theorem 2.1. Let µ be a probability measure R. The following conditions

are equivalent:
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(i) There exist real constants M1,M2, ... ∈ R such that

lim
n→∞

νn = δ0 ,

where νn = D1/nµ ⊗ ... ⊗ D1/nµ
︸ ︷︷ ︸

n−ori

⊗δ−Mn and δ0 Dirac distribution;

(ii) The measure µ satisfies lim
t→∞

t µ (x : |x| > t) = 0. Moreover, if (ii) is

satisfied, the constants Mn in (i) can be chosen to be Mn =
+n∫

−n

tdµ(t).

For the proof of this theorem, we establish some preparatory lemmas.

The foolowing result is related by Bercovici and Voiculescu (1993) in Propo-

sition 4.5. to (1993,[7]).

Lemma 2.1. ([7]) Let µ be a probability measure on R. Given a truncated

cone Γα,β. Then exists a truncated cone Γα′,β′ such that Fµ(Γα′,β′ ) ⊂ Γα,β.

Proof. Fix a number α′ ∈ (0, 1) such that γ = 1
tan α′ , and choose β′ > 0 so

large that

(2.1) |Fµ(u) − u| ≤ sin γ · |u| ,

for all ℑu > β′ and β′ > β
1−α′ . The relation (2.1) is possible beacause

uGµ(u) =
∫

R

z
z−t

dµ(t)
|u|→∞→ 1, thus Fµ(u)

u

|u|→∞→ 1, forall u ∈ Γα′ .

We note the disk Du = {w |w − u| < sin γ · |u|}. We observe that

Fµ(u) ∈ Du if u ∈ Γα′,β′ ⊂ Γα′ , while the implication Du ⊂Γα,β if u ∈ Γα′,β′

is justify in figure 1, where u′ ∈ Γα,β , while ℑu > ℑu′

In the sequel we will use the following notation. If y ≥ 0, we denote

Iy = [−y, y] and ∆y = (−∞,−y) ∪ (y, +∞).

Proposition 2.1. ([8]) Let {µn}∞n=1 be a sequence of probability measures

on R. The following assertions are equivalent

(a) The sequence {µn}∞n=1 converges weakly to a probability measure µ;
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Figure 1: Graphic justfy of implication Du ⊂ Γα,β, u ∈ Γα′

(b) There exist α, β > 0 such that the sequence (ψνn)n=1,∞ −→ ψ, ψ ∈
Γα,β and ψνn(u) = 0(|u|) if u → ∞, u ∈ Γα,β;

(c) There exist α′, β′ > 0 such that the functions ψµn are defined on Γα′,β′

for every n, lim
n→∞

ψµn(iy) exists for every y > β′ and ψµn(iy) = o(y)

uniformly in n as y → ∞.

Lemma 2.2. Let µ be a probability measure on R satisfying condition (i)

of Theorem 2.1. Then

lim
y→∞

(ℑFµ(iy) − y) = 0 .

Proof. By Proposition 2.1,(ii) weak convergence of ν0 to δ0 implies that

there exist α0, β0 > 0 such that ψνn(u) → 0 for u ∈ Γα0,β0
.

However, ψνn(u) = nψD1/nµ(u)−Mn = n· 1
n
ψµ(nu)−Mn = ψµ(nu)−Mn,

which implies

(2.2) lim
n→∞

ℑψνn(u) = lim
n→∞

ℑψµ(nu) = 0 ,
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for all u ∈ Γα0,β0
. By Lemma 2.1, exists α2, α3, β2, β3 > 0 such that α0 > α2

and β0 < β2 such that Fµ has an inverse on Γα2,β2
and Γα0,β0

⊃ Γα2,β2
⊃

Fµ(Γα3,β3
),(α2 > α3 and β3 > β2). Therefore for any for all u ∈ Γα3,β3

it

follows that

(2.3) Fµ(u) = u − ψµ(Fµ(u)) .

Indeed, in condition ψµ(u) = F−1(u) − u replace u → Fµ(u) and we obtain

eager relation. In particular, defining α1, β1 such that α0 > α1 > α2 and

β0 < β1 < β2 then the relation (2.2) holds ∀ u ∈ Γα1,β1
( because Γα0,β0

⊃
Γα1,β1

). Since
∞⋃

n=1

nΓα1,β1
= Γα0,β0

, it is immediate now that

(2.4) lim
|u|→∞ ; u∈Γα1,β1

ℑψµ(u) = 0 .

Since Fµ(u)

u

|u|→∞→ 1, u ∈ Γα, we conclude that Fµ(iy) → iy, and hence

|Fµ(iy)| y→∞→ ∞. Then lim
y→∞

ℑψµ(Fµ(iy)) = 0 (in relation (2.4) replace u

by Fµ(iy)). If in (2.3) we replace u by iy, we obtain ℑFµ(iy) − y =

−ℑψµ(Fµ(iy)), which concludes the proof.

Lemma 2.3. Let σ be a finite positive measure on R such that lim
y→∞

yσ(∆y) =

0. Then the following hold

(i) lim
y→∞

y
√

y
+∞∫

−∞

|t|
y2+t2

dσ(t) = 0;

(ii) lim
y→∞

1
ln y

+y∫

−y

|t| dσ(t) = 0;

(iii) lim
y→∞

1
yk

+y∫

−y

|t|k+1 dσ(t) = 0 , k > 0.

Proof. Consider the function

fy(t) =







y
√

y|t|
y2+t2

, t ∈ [−√
y,
√

y]

0 , otherwise.
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Then lim
y→∞

fy(t) = 0, for all t ∈ R and for all y > 0 we have

|fy(t)| =

∣
∣
∣
∣

y
√

y |t|
y2 + t2

∣
∣
∣
∣
≤ y2

y2 + y
≤ 1 ∈ L

1(σ) .

This condition is the condition of the Lebesque convergence theorem (2000,[4],

Theoreme 3.8., page 76), which implies that lim
y→∞

+∞∫

−∞
fy(t) dσ(t) = 0.

The function g(t) = |t|
y2+t2

is increasing for t ∈ [0,
√

y] and y > 1.

The result now follows because

(2.5) y
√

y

+∞∫

−∞

|t|
y2 + t2

dσ(t) =

√
y∫

−√
y

fy(t) dσ(t) + y
√

y

∫

∆√
y

|t|
y2 + t2

dσ(t) .

But y
√

y
∫

∆√
y

|t|
y2+t2

dσ(t) ≤ 1
2

√
yσ(∆√

y) if to count on inequality
√

y

y+1
≤ 1

2
.

In condition (2.5) through on limit when y → ∞,

lim
y→∞

y
√

y

+∞∫

−∞

|t|
y2 + t2

dσ(t) = 0 +
1

2
lim
y→∞

√
yσ(∆√

y) = 0 .

To prove (ii) we integrate by parts and we count on σ (∆y) = σ (R)−σ(Iy) =

1 − σ ([−y, y]) = 1 − 2y, we then have σ(∆t) = 1 − 2 σ(t)
︸︷︷︸

t

.

We have
∫

Iy

|t| dσ(t) = 2

y∫

0

|t| dσ(t) = 2



tσ(t)|y0 −
y∫

0

σ(t) dt





= 2yσ(y) − 2

y∫

0

σ(t) dt

= [1 − σ(∆y)] σ(y) +

y∫

0

σ(∆t) dt − y

= −yσ(∆y) +

y∫

0

σ(∆t) dt .
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Then

1

ln y

∫

Iy

|t| dσ(t) =
−y

ln y
σ(∆y) +

1

ln y

y∫

0

σ(∆t) dt .

It is clear that −y
ln y

σ(∆y) = o(1) if y → ∞. Select ǫ > 0 and choose

N > 0 large enough such that tσ(∆t) < ǫ, ∀ t ≥ N . Then, as y → ∞,

1

ln y

y∫

0

σ(∆t) dt =
1

ln y

N∫

0

σ(∆t) dt +
1

ln y

y∫

N

tσ(∆t)

t
dt

≤ Nσ(R)

ln y
+

1

ln y

y∫

N

ǫ

t
dt

≤ ǫ + o(1) .

We will use the notation My =
∫

Iy

t dµ(t) if y ∈ Z.

Lemma 2.4. Let µ be a probability measure on R such that lim
y→∞

yµ(∆y) = 0.

Then Fµ(iy) = iy − My + o(1) as y → ∞.

Proof. We will prove the estimate Gµ(iy) = 1
iy
− My

y2 + 1
y2 o(1) as y → ∞.

We can estimate separately the real and the imaginary parts of Gµ(iy). For

the real part we have

Gµ(z) =

+∞∫

−∞

dµ(t)

z − t
=⇒ Gµ(iy) =

+∞∫

−∞

dµ(t)

iy − t
=

+∞∫

−∞

iy + t

−y2 − t2
dµ(t) ,

thus

ℜGµ(iy) =

+∞∫

−∞

−t

y2 + t2
dµ(t) =

∫

Iy

−t

y2 + t2
dµ(t) +

∫

∆y

−t

y2 + t2
dµ(t)

=

∫

Iy

−ty2 − t3

y2(y2 + t2)
dµ(t) +

∫

Iy

t3

y2(y2 + t2)
dµ(t) +

∫

∆y

−t

y2 + t2
dµ(t)

= −My

y2
+

∫

Iy

t3

y2(y2 + t2)
dµ(t) +

∫

∆y

−t

y2 + t2
dµ(t) .
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On the other side,
∣
∣
∣
∣
∣
∣
∣

∫

Iy

t3

y2(y2 + t2)
dµ(t) +

∫

∆y

−t

y2 + t2
dµ(t)

∣
∣
∣
∣
∣
∣
∣

≤
∫

Iy

|t|3
y2(y2 + t2)

dµ(t)+

∫

∆y

|t|
y2 + t2

dµ(t) ≤ 1

y4

∫

Iy

|t|3 dµ(t)

︸ ︷︷ ︸

1

y2 · 1

y2

∫

Iy

|t|2+1 dµ(t)

+
1

2y

∫

∆y

dµ(t)

︸ ︷︷ ︸

µ(∆y)

Lemma2.3 (iii)

≤ 1
y2 o(1) + 1

2y2 yµ(∆y) = 1
y2 o(1) .

Thus, ℜGµ(iy) ≤ −My

y2 + 1
y2 o(1). The imaginary part

ℑGµ(iy) =

+∞∫

−∞

−y

y2 + t2
dµ(t) = −1

y

+∞∫

−∞

y2 ± t2

y2 + t2
dµ(t)

= −1

y

+∞∫

−∞

dµ(t)

︸ ︷︷ ︸

µ(R)=1

+
1

y

+∞∫

−∞

t2

y2 + t2
dµ(t)

= −1

y
+

1

y

∫

Iy

t2

y2 + t2
dµ(t) +

1

y

∫

∆y

t2

y2 + t2
dµ(t)

≤ −1

y
+

1

y3

∫

Iy

t2 dµ(t) +
1

2y
µ(∆y)

Lemma2.3 (iii)

≤ −1

y
+

1

y2
o(1) .

But 1
Gµ(iy)

= − y2

iy+My−o(1)
= iy · iy

iy+My−o(1)
= iy

(

1 + My−o(1)

iy

)−1

.

We say the development in Mac-Laurent series of function x 7→ 1
1+x

≈
1 − x + .... Then the reciprocal Cauchy transform is Fµ(iy) = 1

Gµ(iy)
=

iy
(

1 − My−o(1)

iy

)

= iy − My + o(1).
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Lemma 2.5. Let µ be a probability measure on R such that lim
y→∞

yµ(∆y) = 0

and z ∈ Γ1/4. Then

d

dz
Fµ(z) = 1 +

1
√

|z|
o(1) ,

as |z| → ∞ in Γ1/4.

Proof. By the Nevanlinna representation according to (1963,[2]) of Fµ(z),

F (z) = a + z +

∞∫

−∞

1 + tz

t − z
dσ(t) , z ∈ C

+ wich implies

ℑFµ(iy) = y + η(y) ,

where η(y) =
+∞∫

−∞

y(1+t2)
y2+t2

dσ(t). By Lemma 2.4, Fµ(iy) = iy−My +o(1) wich

implies ℑFµ(iy) = y. Then, through identicaly results that η(y) = o(1) as

y → ∞.

Observe that, for |t| ≥ y > 0, yt2

y2+t2
≥ 1

2
y, then, η(y) ≥

+∞∫

−∞

yt2

y2+t2
dσ(t) ≥

∫

∆y

yt2

y2+t2
dσ(t) ≥ 1

2
yσ(∆y). Therefore yσ(∆y) = o(1) as y → ∞.

Again by the Nevanlinna representation we get d
dz

Fµ(z) = 1+
+∞∫

−∞

1+t2

(z−t)2
dσ(t).

For z = x + iy ∈ Γ1/4 wich implies |x| < y
4

and

∣
∣
∣
∣
∣
∣

+∞∫

−∞

1 + t2

(z − t)2
dσ(t)

∣
∣
∣
∣
∣
∣

≤
+∞∫

−∞

1 + t2

|z − t| dσ(t) ≤
+∞∫

−∞

1 + t2

(x − t)2 + y2
dσ(t)

≤
+∞∫

−∞

1 + t2

t2 + y2 − |t|y
2

dσ(t) ≤ 2

+∞∫

−∞

1 + t2

t2 + y2
dσ(t) ,

since here use the inequality t2 + y2 − |t|y
2

≥ t2+y2

2
for all t.
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Furthermore, notice that
∫

I√y

1+t2

t2+y2 dσ(t) ≤ 1+y
y+y2 σ(∆√

y) = 1
y

σ(∆√
y) =

1√
y
· 1√

y
σ(∆√

y) = 1√
y
·
√

yσ(∆√
y)

y
= 1√

y
o(1). Here we used the fact that the

function t 7→ 1+t2

t2+y2 is increasing for t > 0 and y > 1.

On the other side,
∫

∆√
y

1 + t2

t2 + y2

︸ ︷︷ ︸

≤1

dσ(t) ≤ σ(∆√
y) = 1√

y
o(1). Since y ≤

|z| <
√

17
4

, for |z| ∈ Γ1/4, we get the desired estimate.

Lemma 2.6. Let µ be a probability measure on R such that lim
y→∞

yµ(∆y) = 0.

Then ψµ(iy) = My + o(1) as y → ∞.

Proof. By Lemma 2.4, Fµ(iy) = iy − My + h(y) with lim
y→∞

h(y) = 0, while

by Lemma 2.3(ii), My = o(ln y) if y → ∞, follows that Fµ(iy) ∈ Γ1/4 for y

large enough.

Thus for y large enough, iy = F−1
µ (Fµ(iy)) = F−1

µ (iy−My+h(y)). However,

let z = iy−My +h(y), then F−1
µ (z) = z+My−h(y) = z+o(|z|) as |z| → ∞

and z ∈ Γ1/4.

By Lemma 2.5 and F−1
µ (z) = z + o(|z|), we have that d

dz
F−1

µ (z) = 1 +
1√
|z|

k(z) with k(z) = o(1) as |z| → ∞ and z ∈ Γ1/4. Therefore

F−1
µ (iy − My + h(y)) − F−1

µ (iy) = (iy − My + h(y) − iy)
d

dz
F−1

µ (z)|z=γ

= [−My + h(y)]

(

1 +
k(γ)
√

|γ|

)

= (−My + h(y))(1 + o(1)) as y → ∞ .

We get that

ψµ(iy) = F−1
µ (iy) − iy

= F−1
µ (iy − My + h(y))

︸ ︷︷ ︸

iy

+My − h(y) + My · o(1) − h(y) · o(1) − iy

= My + o(1) as y → ∞ .
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Proof of the Theorem 2.1

Proof. (i)⇒(ii): assume that µ satisfies condition (i) of the theorem. The

Nevanlinna representation of Fµ(z) implies for y > 0 that,

Fµ(iy) = a + iy +

+∞∫

−∞

1 + iyz

t − iy
dσ(t)

wich is equivalent with

Fµ(iy) = a + iy +

+∞∫

−∞

t − y2t + i(yt2 + y)

t2 + y2
dσ(t) ,

which means

ℑFµ(iy) = y + η(y),

ℜFµ(iy) = a + ξ(y),

with η(y) =
+∞∫

−∞

y(1+t2)
t2+y2 dσ(t) and ξ(y) =

+∞∫

−∞

t(1−y2)
t2+y2 dσ(t).

By Lemmas 2.2 and 2.4, Fµ(iy) = iy − My + o(1), ℑFµ(iy) = y, we have

that η(y) = o(1) if y → ∞, and the same argument used in Lemma 2.5,

yσ(∆y) = o(1) as y → ∞. This estimate along with Lemma 2.3(i) allows

us to conclude that ξ(y) = o(
√

y) as y → ∞. Indeed

|ξ(y)|√
y

≤ 1√
y
· y

√
y

y
√

y

+∞∫

−∞

|t(1 − y2)|
t2 + y2

dσ(t) = y
√

y

+∞∫

−∞

|t| |1 − y2|
y2(t2 + y2)

dσ(t)

≤ y
√

y

+∞∫

−∞

|t|
t2 + y2

dσ(t) = o(1) ,

Here we used the inequality
|1−y2|

y2 < 1 for y > 1.

We can now estimate the imaginary part of Gµ(iy). Is know the fact

that ℑ1
z

= − ℑz
|z|2 . Then
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ℑGµ(iy) = ℑ 1

Fµ(iy)
= −ℑFµ(iy)

|Fµ(iy)|2
=

−y + o(1)

ℜ2Fµ(iy) + ℑ2Fµ(iy)

=
−y + o(1)

(a + o(
√

y))2 + (y + o(1))2
=

−y + o(1)

a2 + y2
(2.6)

<
−y + o(1)

y2
= −1

y
+

1

y2
o(1) .

By Lemma 2.4, ℑGµ(iy) = − 1
y

+ 1
y

+∞∫

−∞

t2

y2+t2
dµ(t) wich implies

+∞∫

−∞

yt2

y2 + t2
dµ(t) = o(1).

By proof of Lemma 2.5 results that

+∞∫

−∞

yt2

y2 + t2
dµ(t) ≥

∫

∆y

yt2

y2 + t2
dµ(t) ≥ 1

2
yµ(∆y) ,

which lead at yµ(∆y) = o(1) as y → ∞ that is (ii).

(ii)⇒(i): suppose that µ satisfies condition (ii) of the theorem. We have

ψνn(z) = ψµ(nz) − Mn where the νn are defined as in condition (i) of the

theorem. Notice that the functions ψνn are defined on a certain truncated

cone Γα,β for every n.

By Lemma 2.6 for every fixed y > β, ψνn(iy) = ψµ(iny) − Mn = Mny −
Mn + o(1), if n → ∞ and y → ∞.

Assuming without loss of generality that β > 1, the argument used in
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Lemma 2.3, gives the following estimate

|Mny − Mn| =

∣
∣
∣
∣
∣
∣
∣

∫

Iny

t dµ(t) −
∫

In

t dµ(t)

∣
∣
∣
∣
∣
∣
∣

≤
∫

Iny−In

|t| dµ(t) = −nyµ(∆ny) − nµ(∆n) +

ny∫

n

µ(∆t) dt

≤ −nyµ(∆ny) − nµ(∆n) + sup
t∈[n,ny]

tµ(∆t)

ny∫

n

1

t
dt

≤ −nyµ(∆ny) − nµ(∆n) + sup
t∈[n,ny]

tµ(∆t) ln y = o(1) .

Therefore, lim
n→∞

ψνn(iy) = 0.

Moreover

lim sup
y→∞

∣
∣
∣
∣

ψνn(iy)

y

∣
∣
∣
∣
≤ lim sup

y→∞

−2k + k ln y

y
=

lim sup
y→∞

−2k

y
+ k lim sup

y→∞

ln y

y
= 0 .

Hence Proposition 2.1(c), νn converges weakly to a measure ν and ψν(iy) =

0 for every y > β. The identicaly theorem then implies that ψν(z) = 0, for

every that z ∈ Γα,β which implies that ν = δ0.
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