The approximation of a Polynomial's Measure, with Applications towards Jensen's Theorem ${ }^{1}$

Alexe Călin Mureşan

Abstract

We introduce the notion of measure of a polynomial $F(z)$ with complex coefficients, then we give an interpretation for it as an integral, using Jensen's theorem. By introducing a new polynomial F must be evaluated, depending on the measure of the new polynomial, according only to the expression of F, or to other integral expressions.

2000 Mathematical Subject Classification:65E05

Key words: Measure of a polynomial, Jensen's equality, Graeffe's method.

1 Introduction

For $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, F(x) \in \mathbb{C}[x], a_{0} \neq 0, a_{n} \neq 0$, $n \geq 1$ with the roots $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$; repeated according to their multiplicity, then we introduce the notion of measure of polynomial $F(z)$ with complex coefficients.

[^0]$$
M(F)=M[F(x)]=\left|a_{n}\right| \cdot \prod_{j=1}^{n} \max \left\{1,\left|x_{j}\right|\right\}
$$
and there will be found an interpretation for it as an integral, by using Jensen's theorem:
$$
\ln [M(f)]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta
$$

We can determinate effectively the series $\left(F_{m}\right)_{m \geq 1}$ and then, $M(F)$ which is a real number, from relations:

$$
\begin{gathered}
2^{-n \cdot 2^{-m}} \cdot\left\|F_{m}\right\|^{2^{-m}} \leq M(F) \leq\left\|F_{m}\right\|^{2^{-m}} \\
\lim _{m \rightarrow \infty}\left\|F_{m}\right\|^{2^{-m}}=M(F)
\end{gathered}
$$

Now by anew polynomial which depends on F, and that has all the roots in $D(0,1)$, the degree of the polynomials F must be evaluated, depending either on the edge of all the real roots $R=1+\sum_{k=0}^{n-1}\left|\frac{a_{k}}{a_{n}}\right|=\frac{L(F)}{\left|a_{n}\right|}$, on the maximum and minimum of $F(z)$ when $|z|=1$, or on the measure of a new polynomial or, least but not last, depending only the expression of F.
For example:

$$
\begin{gathered}
\frac{\ln \left\{\min _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln |L(F)|-\ln \left|a_{n}\right|} \leq n \leq \frac{\ln \left\{\max _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln |L(F)|-\ln \left|a_{n}\right|} \\
n=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left[\frac{L(F)}{a_{n}} \cdot e^{i \theta}\right]\right| d \theta-\ln \left|a_{n}\right|}{\ln [L(F)]-\ln \left|a_{n}\right|}
\end{gathered}
$$

Also, other relation allowing the evaluation of maximum and minimum for $F(z)$ when $|z|=R$ has been deducted; depending on the edge R, and depending on the polynomial's coefficients and degree. Then we can compare the previous results with some basic results on Complex Analysis for $R=\frac{L(P)}{\left|a_{n}\right|}$ the edge of all the real roots, such as 'The Cauchy's integral formula for polynomials on R '-radius circles and 'Maximum Principle'.

2 Measure of a polynomial

Definition 2.1. Let $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, n \geq 1$, $a_{n} \neq 0, F(x) \in \mathbb{C}[x]$, with the roots $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$; repeated according to their multiplicity, then by definition, the measure of the polynomials F, noted by $M(F)$, is:

$$
M(F)=M[F(x)]=\left|a_{n}\right| \cdot \prod_{j=1}^{n} \max \left\{1,\left|x_{j}\right|\right\}
$$

Definition 2.2. Let $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, n \geq 1, a_{n} \neq 0$, Then the norm of the polynomial F, noted by $\|F\|$, will be:

$$
\|F\|=\sqrt{a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}
$$

And the length of the polynomial F noted by $L(F)$ is:

$$
L(F)=\sum_{k=0}^{n}\left|a_{k}\right| .
$$

Theorem 2.1. For $F(x) \in \mathbb{C}[x] ; F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, n \geq$ $1, a_{n} \neq 0$, with the toots $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$; repeated according to their multiplicity, then we have:
a) $M(F)=\frac{\left|a_{0}\right|}{\prod_{j=1}^{n} \min \left\{1,\left|x_{j}\right|\right\}}$; b) $M\left[x^{n} \cdot F\left(\frac{1}{x}\right)\right]=M[F(x)]$;
c) $M(P \cdot Q)=M(P) \cdot M(Q)$, for all $P, Q \in \mathbb{C}[x] ;$ d) $M\left[F\left(x^{k}\right)\right]=M[F(x)]$
e) $M^{2}(F)+\left|a_{o} a_{n}\right|^{2} \cdot M^{-2}(F) \leq\|F\|^{2}$.

Proof. a) From Viete's formulas we have $\prod_{j=1}^{n}\left|x_{j}\right|=\left|\frac{a_{0}}{a_{n}}\right|$.

But, $\prod_{j=1}^{n}\left|x_{j}\right|=\prod_{j=1}^{n} \max \left\{1,\left|x_{j}\right|\right\} \cdot \prod_{j=1}^{n} \min \left\{1,\left|x_{j}\right|\right\}=\left|\frac{a_{0}}{a_{n}}\right|$.
where we have $\left|a_{n}\right| \cdot \prod_{j=1}^{n} \max \left\{1,\left|x_{j}\right|\right\}=\frac{\left|a_{0}\right|}{\prod_{j=1}^{n} \min \left\{1,\left|x_{j}\right|\right\}}$.
b) $H(x)=x^{n} \cdot F\left(\frac{1}{x}\right)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}$,
$M\left[x^{n} \cdot F\left(\frac{1}{x}\right)\right]=a_{0} \cdot \prod_{j=1}^{n} \max \left\{1,\left|y_{j}\right|\right\}$ where $H\left(j_{j}\right)=0$ and $y_{j}=\frac{1}{x_{j}}$, $j=\overline{1, n}$.

Now $M\left[x^{n} \cdot F\left(\frac{1}{x}\right)\right]=\frac{\left|a_{0}\right|}{\prod_{j=1}^{n} \min \left\{1,\left|x_{j}\right|\right\}}$ and from a) is obvious.
c) and d) are easy to prove, also see [1] from References.
e) see[1] or[2] from References.
f)From (e) we have that: $M^{2}(F) \leq\|F\|^{2}$ and $M(F) \leq\|F\|$

Theorem 2.2. If $f(x)=a_{n} \cdot \prod_{j=1}^{n}\left(x-x_{j}\right), a_{n} \neq 0$, where $x_{j} \in \mathbb{C} ; j=\overline{1, n}, n \geq$ 1 are the polynomials roots, repeated according to their multiplicity, and the polynomials
$F_{m}(x)= \pm a_{n}^{2 m} \cdot \prod_{j=1}^{n}\left(x-x_{j}^{2^{m}}\right) ; m \geq 0$.
Then we can calculate $F_{m}(x)$ according to Graeffe's Method, that is:
i) $F_{0}(x)=F(x)$
ii) Then for $m=\overline{0, n-1}$, we can find $\left\{G_{m}(x), H_{m}(x), F_{m+1}(x)\right\} \in C[x]$ in order to have: $F_{m}(x)=G_{m}\left(x^{2}\right)-x \cdot H_{m}^{2}(x)$. , $F_{m+1}(x)=G_{m}^{2}(x)-x \cdot H_{m}^{2}(x)$ iii) Finally, we find $F_{m}(x)$ for all $m \geq 0$.

Proof. See [3] from References.

Theorem 2.3. If $F(x) \in C[x]$; grad $F \geq 1$ and F_{m}, $m \geq 0$, the polynomial series associated through the Graeffe's Method, them:

$$
2^{-n \cdot 2-m} \cdot\left\|F_{m}\right\|^{2^{-m}} \neq\left\|F_{m}\right\|^{2^{-m}}
$$

and

$$
\lim _{n \rightarrow \infty}\left\|F_{m}\right\|^{2^{-m}}=M(F)
$$

Proof. See [3] from References.
Remark 2.1. This theorem allows evaluating the polynomial's measure as many as exact decimals.

3 Jensen's Equality and its Applications

Theorem 3.1. Jensen's equality. Let $F(x)$ an analytic function in a region which contains the closed disk $\bar{D}(0 ; R) ; R>0$ in the complex plane, if $n \geq 1, x_{1}, x_{2}, \ldots, x_{n} \in C,\left|x_{j}\right|<R$, for all $i=\overline{1, n}$, are the zeros of F in the interior of $D(0 ; R)$ repeated according to their multiplicity and if $F(0) \neq 0$, then:

$$
\begin{gathered}
\ln |F(0)|=-\sum_{j=1}^{n} \ln \left(\frac{R}{x_{j}}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(R \cdot e^{i \theta}\right)\right| d \theta \text { or }: \\
n \ln R=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(R \cdot e^{i \theta}\right)\right| d \theta-\ln |F(0)|+\ln \left(\prod_{j=1}^{n}\left|x_{j}\right|\right) .
\end{gathered}
$$

Proof. See [2] or [5] from References.
Remark 3.1. This formula establishes a connection between the moduli of the zeros of the function F inside the disk $|z|<R$ and the values of $|F(z)|$ on the circle $|z|=R$, and can be seen as a generalization of the mean value property of harmonic functions.

Consequence 3.1. Let $F(x)$ an analytic function in a region which contains the closed disk $\bar{D}(0 ; 1)$ in the complex plane, $m \geq 1$ is the number of all zeros of F in the interior of $D(0 ; 1)$ repeated according to multiplicity, then:

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta-\ln |F(0)|+\ln \left(\prod_{j=1}^{n}\left|x_{i}\right|\right) .
$$

Proof. Is obvious by Theorem 3.1 for $R=1$.
Theorem 3.2. If $F(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}, F(x) \in$ $C[x], a_{0} \neq 0, a_{m} \neq 0, m \geq 1$ then:

$$
\ln [M(F)]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta
$$

and:

$$
\min _{|z|=1}\{|F(z)|\} \leq M(F) \leq \max _{|z|=1}\{|F(z)|\}
$$

Proof. Let be: $x_{1}, x_{2}, \ldots, x_{m} \in C$, for all $i=\overline{1, m}$ all the roots, repeated according to multiplicity of $F(x)$ in the complex plane; and $x-1, x_{2}, \ldots x_{n}$ the roots repeated according to multiplicity of $F(x)$ in the interior of $D(0 ; 1) \mid x-$ $j \mid<1 ; j+\overline{1, n}$.
Because $F(x)$ is a polynomial analytic function and $F(0)=a_{0} \neq 0$ we are within the hypothesis of Consequence 3.1, and we have:

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta-\ln |F(0)|+\ln \left(\prod_{j=1}^{n}\left|x_{j}\right|\right)
$$

that is:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta=\ln |F(0)|-\ln \left(\prod_{j=1}^{n}\left|x_{j}\right|\right)
$$

In conclusion,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta=\ln \frac{\left|a_{0}\right|}{\prod_{j=1}^{n}\left|x_{j}\right|}
$$

$$
\begin{gathered}
\text { But } \prod_{j=1}^{n}\left|x_{j}\right|=\prod_{j=1}^{m} \min \left\{1,\left|x_{j}\right|\right\} \text { and according to Theorem } 2.1 \text { a), we have: } \\
\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left(e^{i \theta}\right)\right| d \theta=\ln (M(F))
\end{gathered}
$$

Next, by maximizing and minimizing, we obtain:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left[\min _{|z|=1}(|F(z)|)\right] d \theta \leq \ln (M(F)) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left[\max _{|z|=1}(|F(z)|)\right] d \theta
$$

that is:

$$
\min _{|z|=1}\{|F(z)|\} \leq M(F) \leq \max _{|z|=1}\{|F(z)|\} .
$$

Theorem 3.3. If $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in C ; i=$ $\overline{1, n}, n \geq 1$, and $a_{0} \neq 0, a_{n} \neq 0$ if $x_{1}, x_{2}, \ldots, x_{n}$ are the roots repeated according to multiplicity of $F(x), F\left(x_{j}\right)=0,=\overline{1, n}$ then exists $R>0$;
$R>\max \left\{1, \sum_{k=0}^{n-1}\left|\frac{a_{k}}{a_{n}}\right|\right\}$ or $R>1+\max _{0 \leq k<n}\left\{\left|\frac{a_{k}}{a_{n}}\right|\right\}$ or simply $R=1 \sum_{k=0}^{n-1}\left|\frac{a_{k}}{a_{n}}\right|$ $=\frac{L(F)}{\left|a_{n}\right|}$, with $\left|x_{i}\right|<R ; i=\overline{1, n}$.

Proof. See [1] or [4] from References.
Remark 3.2. We shall now give a few inequalities which resulted by combining the condition from Theorem 3.3., so that all the roots of a polynomial $F(x)$ to be, within the moduli in interval $(0, R)$, and the Jensen's equality. We have inferred these inequalities by using Theorem 3.2. where the author introduced the measure of a polynomial in the above equality.

Theorem 3.4. If $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in C ; i=$ $\overline{1, n}, n \geq 1$ and $R \in R, R>0$, so that $F\left(x_{i}\right)=0,\left|x_{i}\right|<R ; i=\overline{1, n}$, where $x-1, x-2$, dots, x_{n} are all the roots repeated according to multiplicity of $F(x)$ and $a_{0} \neq, a_{n} \neq 0$, then:
a) If $G(y)=F(R \cdot y)$ and $G\left(y_{i}\right)=0, i=\overline{1, n}$, that is $y_{1}, y_{2}, \ldots, y_{n}$ are the roots repeated according to multiplicity of $G(y)$, then $y_{i}=\frac{x_{i}}{R}$ and $\left|y_{i}\right|<1$.
b) Exists $\epsilon \in R ; 0<\epsilon<1$ so that $\left|a_{0}\right| \cdot(1-\epsilon)^{n} \leq \max _{|z|=R(1-\epsilon)}\{|F(z)|\}$ and
c) $\frac{\ln \left\{\min _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln R} \leq n \leq \frac{\ln \left\{\max _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln R}$.

Proof. a) Let $y_{i}=\frac{x_{i}}{R} ; i=\overline{1, n}$, then $G\left(y_{i}\right)=F\left(R \cdot y_{i}\right)=F\left(R \cdot \frac{x_{i}}{R}=F\left(x_{i}\right)=\right.$ 0), for all $i=\overline{1, n}$.
In conclusion, $y_{i}=\frac{x_{i}}{R}$ are the zeros of $G(y)$.
Moreover, $\left|y_{i}\right|=\left|x_{y}\right| R<\frac{R}{R}=1$, that involves $\left|y_{i}\right|<1 ; y=\overline{1, n}$.
b)Because $G(y)=F(R \cdot y)$, we have:
$G(y)=a_{n} R^{n} \cdot y^{n}+a_{n-1} R^{n-1} \cdot y^{n-1}+\ldots+a_{1} R \cdot y+a_{0}, a_{i} \in \mathbb{C} ; i=\overline{1, n}$
We choose $\epsilon>0$ so that $R_{1}=1-\epsilon$ and $\left|y_{i}\right|<1-\epsilon<1, i=\overline{1, n}$.
This choise was possible due to the fact that $\left|y_{i}\right|<1, i=\overline{1, n}$.
From Jensen's equality for $G(y)$, we have:

$$
n \ln R_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|G\left(R_{1} \cdot e^{i \theta}\right)\right| d \theta-\ln |G(0)|+\ln \left(\prod_{j=1}^{n}\left|y_{j}\right|\right)
$$

Because for $j=\overline{1, n},\left|y_{i}\right|<R_{1}<1$, we have $0 \leq \prod_{j=1}^{n}\left|y_{j}\right|<1$ which implies $\ln \left(\prod_{j=1}^{n}\left|y_{j}\right|\right)<0$.
And next $G(0)=a_{0} \neq 0$ and $\int_{0}^{2 \pi} \ln \mid G\left(R_{1} \cdot e^{i \theta)} \mid d \theta<\int_{o}^{2 \pi} \ln \left[\max _{|z|=R_{1}}|G(z)|\right] d \theta\right.$,
Therefore, from the previous relation we have:

$$
n \ln R_{1} \leq \frac{1}{2 \pi} \cdot 2 \pi \cdot \ln \left[\max _{|z|=R_{1}}|G(z)|\right]-\ln \left|a_{0}\right|
$$

and because $R_{1}=1-\epsilon, \epsilon>0$, that is:

$$
\ln (1-\epsilon)^{n} \leq \ln \frac{\max _{|z|=1-\epsilon}|G(z)|}{\left|a_{0}\right|}
$$

or,

$$
\begin{equation*}
(1-\epsilon)^{n} \leq \frac{\max _{|z|=1-\epsilon}|G(z)|}{\left|a_{0}\right|} . \tag{3.1}
\end{equation*}
$$

As $\max _{|z|=1-\epsilon}|G(z)|=\max _{|z|=1-\epsilon}|F(R \cdot z)|$, by nothing $R \cdot z=z_{1}$, implies that $z=\frac{z_{1}}{R}$, and then:

$$
\max _{|z|=1-\epsilon}|G(z)|=\max _{\left\lvert\, \frac{1}{R}\right.}^{R}\left|=1-\epsilon<1 F\left(z_{1}\right)\right|=\max _{\left|z_{1}\right|=R(1-\epsilon)}\left|F\left(z_{1}\right)\right| .
$$

As a result:

$$
\begin{equation*}
\max _{|z|=R_{1}=1-\epsilon}|G(z)|=\max _{|z|=R(1-\epsilon)}\left|F\left(z_{1}\right)\right|=\max _{|z|=R(1-\epsilon)}|F(z)| \tag{3.2}
\end{equation*}
$$

From relation (3.1) and relation (3.2) we have:

$$
(1-\epsilon)^{n} \leq \frac{\max _{|z|=R(1-\epsilon)}|F(z)|}{\left|a_{0}\right|}
$$

which is equivalent with

$$
\left|a_{0}\right| \cdot(1-\epsilon)^{n} \leq \max _{|z|=R(1-\epsilon)}\{|F(z)|\}
$$

with $\epsilon>0$, conveniently chosen.
c) By applying Theorem 3.2. to the polynomial $G(z)=F(R \cdot z)$, is obtained, due to the fact that $\left|y_{i}\right|<1 ; i=\overline{1, n}$:

$$
\min _{|z|=1}\{G(z)\} \leq M[G(z)] \leq \max _{|z|=1}\{G(z)\}
$$

that is:

$$
\min _{|z|=1}\{|F(R \cdot z)|\} \leq M[G(z)] \leq \max _{|z|=1}\{|F(R \cdot z)|\} .
$$

By nothing $R \cdot z=z_{1}$, we obtain:
$|z|=1$ is equivalent to $\left|z_{1}\right|=R ; \min _{|z|=1}\{|F(R \cdot z)|\}=\min _{\left|z_{1}\right|=R}\left\{F\left(z_{1}\right)\right\}$
$\max _{|z|=1}\left\{\left|F\left(z_{1}\right)\right|\right\}=\max _{\left|z_{1}\right|=1}\left\{\left|F\left(z_{1}\right)\right|\right\}$.
Then:

$$
\min _{\left|z_{1}\right|=R}\left\{\left|F\left(z_{1}\right)\right|\right\} \leq M\left[F\left(z_{1}\right)\right] \leq M[G(z)] \leq \max _{\left|z_{1}\right|=R}\left\{F\left(z_{1}\right)\right\} .
$$

And afterwards nothing $z_{1}=z$ we have:

$$
\begin{equation*}
\min _{|z|=R}\{|F(z)|\} \leq M[G(z)] \leq \max _{|z|=R}\{F(z)\} \tag{3.3}
\end{equation*}
$$

Still, $M[F(R \cdot z)]=M[G(z)]=M\left[a_{n} R^{n} z^{n}+a_{n-1} R^{n-1} y^{n-1}+\ldots+a_{1} R y+a_{0}\right]$.
For $G(z)=a_{n} R^{n} \cdot \prod_{j=1}^{n}\left(z-y_{j}\right)$ we have from definition:
$M[G(z)]=\left|a_{n} R^{n}\right| \cdot \prod_{j=1}^{n} \max \left\{1,\left|y_{j}\right|\right\}$, that is: $M[G(z)]=M[F(R \cdot z)]=$
$=\left|a_{n} R^{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|y_{j}\right|\right\}$.
But due to the fact that $\left|y_{j}\right|<1, j=\overline{1, n}$, we obtain

$$
\begin{equation*}
M[F(R \cdot z)]=M[G(z)]=\left|a_{n}\right| \cdot R^{n} \tag{3.4}
\end{equation*}
$$

Therefore, from relation (3.3) an (3.4), we obtain:

$$
\min _{|z|=R}\{|F(z)|\} \leq M[G(z)]=\left|a_{n}\right| \cdot R^{n} \leq \max _{|z|=R}\{F(z)\}
$$

And that implies: $\ln \left[\min _{|z|=R}\{F(z)\}\right] \leq \ln \left[\left|a_{n}\right| \cdot R^{n}\right] \leq \ln \left[\max _{|z|=R}\{|F(z)|\}\right]$ which is equivalent with

$$
\ln \left[\min _{|z|=R}\{|F(z)|\}\right]-\ln \left|a_{n}\right| \leq n \ln R \leq \ln \left[\max _{|z|=R}\{|F(z)|\}\right]-\ln \left|a_{n}\right|,
$$

and because $R>1$ we have:

$$
\frac{\ln \left\{\min _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln R} \leq n \leq \frac{\ln \left\{\max _{|z|=R}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln R}
$$

Consequence 3.2. If $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{C} ; i=$ $\overline{1, n}, n \geq 1, F\left(x_{i}\right)=0, i=\overline{1, n}$, where $x_{1}, x_{2}, \ldots, x_{n}$, are the roots repeated according to multiplicity of $F(x)$ and $a_{0} \neq 0, a_{n} \neq 0$, then:
a)

$$
\frac{\ln \left\{\min _{|z|=\frac{L(F)}{a_{n}}}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln L(F)-\ln \left|a_{n}\right|} \leq n \leq \frac{\ln \left\{\max _{|z|=\frac{L(F)}{\left|a_{n}\right|}}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln L(F)-\ln \left|a_{n}\right|} ;
$$

b) Moreover, if $L(F)=1$ then:

$$
\begin{aligned}
& \qquad \frac{\ln \left\{\min _{|z|=\frac{1}{a_{n}}}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln \left|a_{n}\right|} \geq n \geq \frac{\ln \left\{\max _{|z|=\frac{1}{\left|a_{n}\right|}}|F(z)|\right\}-\ln \left|a_{n}\right|}{\ln \left|a_{n}\right|} ; \\
& \text { c) Furthermore, if } a_{n}=1 \text { then: } \frac{\ln \left\{\min _{|z|=L(F)}|F(z)|\right\}}{\ln L(F)} \leq n \leq \frac{\ln \left\{\max _{|z|=L(F)}|F(z)|\right\}}{\ln L(F)} .
\end{aligned}
$$

Proof. a) We can prove it by using Theorem 3.3 for $R=\frac{L(f)}{\left|a_{n}\right|}$ and from Theorem 3.4. c)
b),c) is obvious from a).

Theorem 3.5. The Maximum Principle. An analytic function on an open set $U \subset \mathbb{C}$ assumes its maximum modulus on the boundary. Moreover, if f is analytic and takes at least two distinct values on an open connected set $U \subset \mathbb{C}$, then

$$
|F(z)|<\sup _{z \in U}|F(z)|, z \in U
$$

Proof. See [5] to References.
Remark 3.3. If $F(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}, a_{1} \in \mathbb{C} ; i=\overline{1, n}$, $n \geq 1, a_{n} \neq 0, R>0$, then:
a) $|F(z)| \leq \max _{|z|=R}\{F(z)\} \leq\left|a_{n}\right| R^{n}+\left|a_{n-1}\right| R^{n-1}+\ldots+\left|a_{1}\right| R+a_{0}$, for each $z \in D(0 ; R) \subset \mathbb{C}$.
b) If $R \in R, R>0$, so that $F\left(x_{i}\right)=0,\left|x_{i}\right|<R ; i=\overline{1, n}$, where $x_{1}, x_{2}, \ldots, x_{n}$ are the roots repeated according to multiplicity of $F(x)$ and $a_{0} \neq 0, a_{n} \neq 0$, then:
$\left|a_{n}\right| R^{n} \leq \max _{|z|=R}\{|F(z)|\} \leq\left|a_{n}\right| R^{n}+\left|a_{n}-1\right| R^{n-1}+\ldots+\left|a_{1}\right| R+\left|a_{o}\right|$, for each $z \in D(0 ; R) \subset \mathbb{C}$.

Proof. a) we are in conditions of the Maximum Principle. For $U=$ $D(0 ; R) \subset \mathbb{C}:$
$|F(z)| \leq \max _{|z|=R}\{|F(z)|\}$, for each $z \in D(0 ; R) \subset \mathbb{C}$.
But
$\max _{|z=R|}\{|F(z)|\}=\max _{|z|=R}\left|a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right| \leq\left|a_{n-1}\right| R^{n-1}+\ldots+$ $\left|a_{1}\right| R+\left|a_{0}\right|=a_{n} R^{n}+a_{n-1} R^{n-1}+\ldots+a_{1} R+a_{0}$.
So we have the result
b) From Theorem 3.4 c) we have $\left|a_{n}\right| R^{n} \leq \max _{|z|=R}\{|F(z)|\}$ and from a) of this Theorem we have:
$\left|a_{n}\right| R^{n} \leq \max _{|z|=R}\{|F(z)|\} \leq\left|a_{n}\right| R^{n}+\left|a_{n-1}\right| R^{n-1}+\ldots+\left|a_{1}\right| R+a_{0}$ for each $z \in D(0 ; R) \subset \mathbb{C}$.

Theorem 3.6. If $F(x)+a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{C} ; i=$ $\overline{1, n}, n \geq 1$ and $R=\frac{L(F)}{\left|a_{n}\right|}, R>1$ where $x_{1}, x_{2}, \ldots, x_{n}$ are the roots repeated according to multiplicity of $F(x)$ and $a_{0} \neq 0, a_{n} \neq 0$, then:

$$
n=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left[\frac{L(F)}{\left|a_{n}\right|} \cdot e^{i \theta}\right]\right| d \theta-\ln \left|a_{n}\right|}{\ln [L(F)]-\ln \left|a_{n}\right|}
$$

Proof. We are in condition of Theorem 3.2. and we have for $G(z)=F(R \cdot z)$

$$
\ln [M(G)]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|G\left(e^{i \theta}\right)\right| d \theta
$$

Also we have $M[G(z)]=\left|a_{n}\right| R^{n}$ from the Theorem 3.4.c)
From these relation, we have: $\ln \left(\left|a_{n}\right| R^{n}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|G\left(e^{i \theta}\right)\right| d \theta$ where

$$
n=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|G\left(e^{i \theta}\right)\right| d \theta-\ln \left|a_{n}\right|}{\ln (R)}
$$

Now we can take from hypothesis $R=1+\sum_{k=0}^{n-1}\left|\frac{a_{k}}{a_{n}}\right|=\frac{L(F)}{\left|a_{n}\right|}$ and from Theorem 3.3. $F\left(x_{i}\right)=0,\left|x_{i}\right|<R ; i=\overline{1, n}$.

Also because $G\left(e^{i \theta}\right)=F\left(R \cdot e^{i \theta}\right)$ we obtain:

$$
n=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left[\frac{L(F)}{\left|a_{n}\right|} \cdot e^{i \theta}\right]\right| d \theta-\ln \left|a_{n}\right|}{\ln \left[\frac{L(F)}{\left|a_{n}\right|}\right]}
$$

or

$$
n=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left[\frac{L(F)}{\left|a_{n}\right|} \cdot e^{i \theta}\right]\right| d \theta-\ln \left|a_{n}\right|}{\ln [L(F)]-\ln \left|a_{n}\right|} .
$$

Theorem 3.7. The Cauchy's integral formula for polynomials on circles. If $F(z)=a_{m} \prod_{j=1}^{m}\left(x-x_{j}\right)$, then the number of indices j for which $\left|x_{j}\right|<R$ is " n ":

$$
n=\frac{1}{2 \pi i} \int_{|z|=R} \frac{F^{\prime}(z)}{F(z)} d z
$$

provided no x_{j} lies on $\operatorname{Fr}(D):|z|=R$.
Proof. $\frac{1}{2 \pi i} \int_{|z|=R} \frac{F^{\prime}(z)}{F(z)} d z=\frac{1}{2 \pi i} \cdot \int_{|z|=R} \sum_{j=0}^{m} \frac{1}{z-x_{j}} d z=$
$\frac{1}{2 \pi i} \cdot \sum_{j=0}^{m} \int_{|z|=R} \frac{1}{z-x_{j}} d z=\frac{1}{2 \pi i} \cdot \sum_{j=0}^{n} \int_{\left|z-x_{j}\right|=e} \frac{1}{z-x_{j}} d z=\frac{1}{2 \pi i} \cdot \sum_{j=0}^{n} 2 \pi i=n$ See [5] to References.

Remark 3.4. If $F(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{C} ; i=$ $\overline{1, n}, n \geq$, and $R=\frac{L(F)}{\left|a_{n}\right|}, R>1$, where $x_{1}, x_{2}, \ldots, x_{n}$ are the roots repeated according to multiplicity of $F(x)$ and $a_{0} \neq 0, a_{n} \neq 0$, then:

$$
n=\frac{1}{2 \pi i} \int_{|z|=\frac{L(F)}{\left|a_{n}\right|}} \frac{F^{\prime}(x)}{F(z)} d z=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|F\left[\frac{L(F)}{\left|a_{n}\right|} \cdot e^{i \theta}\right]\right| d \theta-\ln \left|a_{n}\right|}{\ln [L(F)]-\ln \left|a_{n}\right|}
$$

Proof. If we take $R=1+\sum_{k=0}^{n-1}\left|\frac{a_{k}}{a_{n}}\right|=\frac{L(F)}{\left|a_{n}\right|}$ for the "n" from previous theorem, what is now the number of all zeros, we can find first equality, the another was given in Theorem 3.6.

References

[1] Mignotte M., Introduction to Computational Algebra and Linear Programming, Ed. Univ. Bucureşti, 2000, 136-140; 40-44; 149-156.
[2] Prasolov V.V., Polynomials, Moscow Center for Continous math. Education, 2001-2004, 160-170.
[3] Cerlienco L., Mignotte M., Piras F., Computing the measure of a polynomial, Journal of Symbolic Computation Vol.4. Issue1., Academic Press, Inc. Duluth, MN, USA., 1987, 21-34.
[4] Mignotte M., Some Useful Bounds Computing Supplementum 4.,(ed. B.Bucherger, G.E. Collins \& R.G.K. Loos), Springer-Verlag, WIen-New York, 1982, 259-263
[5] L.V. Ahlfors, Complex Anlysis., second edition, McGraw-Hill Book Company., 1979, 205-210; 134-137,139-143.

Department of Mathematics
Petrol-Gaze Ploieşti University

[^0]: ${ }^{1}$ Received 18 August, 2007
 Accepted for publication (in revised form) 28 December, 2007

