On the Unified Class of functions of Complex Order involving Dziok-Srivastava Operator

T.N. Shanmugam, S. Sivasubramanian, G. Murugusundaramoorthy

Abstract

In the present investigation, we consider an unified class of functions of complex order. We obtain a necessary and sufficient condition for functions in these classes.

2000 Mathematical Subject Classification:30C45, 30C55, 30C80
Key words:Starlike functions of complex order, convex functions of complex order, subordination

1 Introduction

Let \mathcal{A} be the class of all analytic functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{2}+\cdots \tag{1.1}
\end{equation*}
$$

in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. A function $f \in \mathcal{A}$ is subordinate to an univalent function $g \in \mathcal{A}$, written $f(z) \prec g(z)$, if $f(0)=$ $g(0)$ and $f(\Delta) \subseteq g(\Delta)$. Let Ω be the family of analytic functions $\omega(z)$ in the

[^0]unit disc Δ satisfying the conditions $\omega(0)=0,|\omega(z)|<1$ for $z \in \Delta$. Note that $f(z) \prec g(z)$ if there is a function $w(z) \in \Omega$ such that $f(z)=g(\omega(z))$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. The class $S^{*}(\phi)$, introduced and studied by Ma and Minda [10], consists of functions in $f \in \mathcal{S}$ for which
$$
\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), \quad(z \in \Delta) .
$$

The functions $h_{\phi n}(n=2,3, \ldots)$ by

$$
\frac{z h_{\phi n}^{\prime}(z)}{h_{\phi n}(z)}=\phi\left(z^{n-1}\right), \quad h_{\phi n}(0)=0=h_{\phi n}^{\prime}(0)-1 .
$$

We write $h_{\phi 2}$ simply as h_{ϕ}. The functions $h_{\phi n}$ are all functions in $S^{*}(\phi)$.
Recently, Ravichandran et al. [14] defined classes related to the class of starlike functions of complex order defined as

Definition 1.1. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Then the class $S_{b}^{*}(\phi)$ consists of all analytic functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \phi(z) .
$$

The class $C_{b}(\phi)$ consists of functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z)
$$

Following the work of Ma and Minda [10], Shanmugam and Sivasubramanian [19] obtained Fekete-Szegö inequality for the more general class $M_{\alpha}(\phi)$, defined by

$$
\frac{\alpha z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{(1-\alpha) f(z)+\alpha z f^{\prime}(z)} \prec \phi(z),
$$

where $\phi(z)$ satisfies the condition mentioned in Definition 1.1.
For any two analytic functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, the Hadamard product or convolution of $f(z)$ and $g(z)$, written as $(f * g)(z)$ is defined by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} .
$$

For complex parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ with $\left(\beta_{j} \neq 0,-1,-2, \ldots ; j=1,2, \ldots, s\right)$, we define the generalized hypergeometric function ${ }_{q} F_{s}(z)$ by

$$
\begin{align*}
&{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n}\left(\alpha_{2}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n}\left(\beta_{2}\right)_{n} \ldots\left(\beta_{s}\right)_{n}(1)_{n}} \tag{1.2}\\
& \quad z^{n} \\
&\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right.=\mathbb{N} \cup\{0\} ; z \in \mathcal{U})
\end{align*}
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined by

$$
(\lambda)_{n}=\left\{\begin{array}{ll}
1 & \text { for } n=0 \tag{1.3}\\
\lambda(\lambda+1) \ldots(\lambda+n-1) & \text { for } n=1,2,3 \ldots
\end{array} .\right.
$$

Corresponding to a function $h_{p}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)$ defined by

$$
h\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots \beta_{s} ; z\right)=z_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right),
$$

we consider the Dziok-Srivastava operator [3]

$$
H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) f(z): \mathcal{A} \longrightarrow \mathcal{A},
$$

defined by the convolution

$$
H\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots \beta_{s}\right) f(z)=h\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots \beta_{s} ; z\right) * f(z) .
$$

We observe that, for a function f of the form (1.1), we have

$$
\begin{equation*}
H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) f(z)=z+\sum_{n=k}^{\infty} \Gamma_{n} a_{n} z^{n} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{n}=\frac{\left(\alpha_{1}\right)_{n-1}\left(\alpha_{2}\right)_{n-1}, \ldots,\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1}\left(\beta_{2}\right)_{n-1}, \ldots,\left(\beta_{s}\right)_{n-1}(1)_{n-1}} \tag{1.5}
\end{equation*}
$$

For convenience, we write

$$
\begin{equation*}
H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right):=H_{q, s}\left(\alpha_{1}\right) \tag{1.6}
\end{equation*}
$$

Thus, through a simple calculations, we obtain

$$
\begin{equation*}
z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{q, s}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}-1\right) H_{q, s}\left(\alpha_{1}\right) f(z) \tag{1.7}
\end{equation*}
$$

The Dziok-Srivastava operator $H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right)$ includes various other linear operators which were considered in earlier works in the literature. For $s=1$ and $q=2$, we obtain the linear operator:

$$
\mathcal{F}\left(\alpha_{1}, \alpha_{2} ; \beta_{1}\right) f(z)=H\left(\alpha_{1}, \alpha_{2} ; \beta_{1}\right) f(z)
$$

which was introduced by Hohlov [6]. Moreover, putting $\alpha_{2}=1$, we obtain the Carlson-Shaffer operator [1]:

$$
\mathcal{L}\left(\alpha_{1}, \beta_{1}\right) f(z)=H\left(\alpha_{1}, 1 ; \beta_{1}\right) f(z) .
$$

Ruscheweyh [16] introduced an operator

$$
\begin{equation*}
\mathcal{D}^{m} f(z)=\frac{z}{(1-z)^{m}} * f(z) \quad(m \geq-1 ; f \in \mathcal{A}) \tag{1.8}
\end{equation*}
$$

From the equation (1.7), we have

$$
\begin{equation*}
\mathcal{D}^{\lambda} f(z)=H(\lambda+1,1 ; 1) f(z) \tag{1.9}
\end{equation*}
$$

In this, we introduce a more general class of complex order $M_{q, s, b, \alpha}(\phi)=$ $M_{\alpha_{1}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{s}, b, \alpha}(\phi)$ which we define below.

Definition 1.2. Let $b \neq 0$ be a complex number. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps
the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Then the class $M_{q, s, b, \alpha}(\phi)$ consists of all analytic functions $f \in \mathcal{A}$ satisfying

$$
1+\frac{1}{b}(\Psi(q, s, z)-1) \prec \phi(z), \quad(\alpha \geq 0) .
$$

where
$\Psi_{q, s}\left(\alpha_{1}\right) f(z):=\Psi\left(\alpha_{1} \ldots . \alpha_{q} ; \beta_{1}, \ldots, \beta_{s} ; z\right) f:=$ (1.10)
$\frac{\alpha\left(\alpha_{1}+1\right) H\left(\alpha_{1}+2\right) f(z)+\left(1-2 \alpha_{1} \alpha\right) H\left(\alpha_{1}+1\right) f(z)-(1-\alpha)\left(\alpha_{1}-1\right) H\left(\alpha_{1}\right) f(z) f(z)}{(1-\alpha) H\left(\alpha_{1}\right) f(z) f(z)+\alpha H\left(\alpha_{1}+1\right) f(z)}$.
We also denote,
(i) For $q=2$ and $s=1, M_{q, s, b, \alpha}(\phi) \equiv F(b, \alpha)(\phi)$.
(ii) For $q=2, s=1$ and $\alpha_{2}=1, M_{q, s, b, \alpha}(\phi) \equiv M\left(\alpha_{1}, \beta_{1}, b, \alpha\right)(\phi)$.
(iii) For $q=2, s=1, \alpha_{1}=1+m, \alpha_{2}=1$ and $\beta_{1}=1, M_{q, s, b, \alpha}(\phi) \equiv$ $M(m, b, \alpha)(\phi)$.

Clearly, for $q=s=1, \alpha_{1}=\beta_{1}=1$,

$$
M_{1,1, b, 0}(\phi) \equiv S_{b}^{*}(\phi) \quad \text { and } \quad M_{1,1, b, 1}(\phi) \equiv C_{b}(\phi)
$$

Motivated essentially by the aforementioned works, we obtain certain necessary and sufficient conditions for the unified class of functions $M_{q, s, b, \alpha}(\phi)$ which we have defined. The motivation of this paper is to generalize the results obtained by Ravichandran et al. [14] and also Srivastava and Lashin [20].

Our results includes several known results. To see this,let $M_{1,1, b, 1}(A, B) \equiv$ $S^{*}(A, B, b)$ and $M_{1,1, b, 1}(A, B) \equiv C(A, B, b)(b \neq 0$, complex $)$ denote the classes $S_{b}^{*}(\phi)$ and $C_{b}(\phi)$ respectively when

$$
\phi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1)
$$

The class $S^{*}(A, B, b)$ and therefore the class $S_{b}^{*}(\phi)$ specialize to several wellknown classes of univalent functions for suitable choices of A, B and b. The class $S^{*}(A, B, 1)$ is denoted by $S^{*}(A, B)$. Some of these classes are listed below where $S T(b)$ denotes $1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)$.

1. $S^{*}(1,-1,1)$ is the class S^{*} of starlike functions [5, 2, 13].
2. $S^{*}(1,-1, b)$ is the class of starlike functions of complex order introduced by Wiatrowski [21]. We denote this class by S_{b}^{*}.
3. $S^{*}(1,-1,1-\beta), 0 \leq \beta<1$, is the class $S^{*}(\beta)$ of starlike functions of order β. This class was introduced by Robertson [15].
4. $S^{*}(1,0, b)$ is the set defined by $|S T(b)-1|<1$.
5. $S^{*}(\beta, 0, b)$ is the set defined by $|S T(b)-1|<\beta, 0 \leq \beta<1$.
6. $S^{*}(\beta,-\beta, b)$ is the set defined by $\left|\frac{S T(b)-1}{S T(b)+1}\right|<\beta, 0 \leq \beta<1$.

To prove our main result, we need the following results.
The following result follows a result of Ruscheweyh [16] for functions in the class $S^{*}(\phi)$ (see Ruscheweyh [17, Theorem 2.37, pages 86-88]).

Lemma 1.1. Let ϕ be a convex function defined on $\Delta, \phi(0)=1$. Define $F(z)$ by

$$
\begin{equation*}
F(z)=z \exp \left(\int_{0}^{z} \frac{\phi(x)-1}{x} d x\right) \tag{1.11}
\end{equation*}
$$

Let $q(z)=1+c_{1} z+\cdots$ be analytic in Δ. Then

$$
\begin{equation*}
1+\frac{z q^{\prime}(z)}{q(z)} \prec \phi(z) \tag{1.12}
\end{equation*}
$$

if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\frac{q(t z)}{q(s z)} \prec \frac{s F(t z)}{t F(s z)} . \tag{1.13}
\end{equation*}
$$

Lemma 1.2. [11, Corollary 3.4h.1, p.135] Let $q(z)$ be univalent in Δ and let $\varphi(z)$ be analytic in a domain containing $q(\Delta)$. If $z q^{\prime}(z) / \varphi(q(z))$ is starlike, then

$$
z p^{\prime}(z) \varphi(p(z)) \prec z q^{\prime}(z) \varphi(q(z)),
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

2 Main Results

By making use of Lemma 1.1, we have the following:
Theorem 2.1. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in M_{q, s, b, \alpha}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\left(\frac{s\left[\left((1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(t z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(t z)\right]\right.}{t\left[(1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(s z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(s z)\right]}\right)^{1 / b} \prec \frac{s F(t z)}{t F(s z)} \tag{2.1}
\end{equation*}
$$

Proof. Define the function $p(z)$ by

$$
\begin{equation*}
p(z):=\left(\frac{(1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(z)}{z}\right)^{1 / b} \tag{2.2}
\end{equation*}
$$

By taking logarithmic derivative of $p(z)$ given by (2.2), we get

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)}=\frac{1}{b}\left\{\frac{(1-\alpha) z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}+\alpha z\left(H_{q, s}\left(\alpha_{1}+1\right) f(z)\right)^{\prime}}{(1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(z)}-1\right\} \tag{2.3}
\end{equation*}
$$

By using the identity (1.7), we obtain by a straight forward computation, we get,

$$
1+\frac{z p^{\prime}(z)}{p(z)}=1+\frac{1}{b}\left(\Psi_{q, s}\left(\alpha_{1}\right) f(z)-1\right)
$$

where
$\Psi_{q, s}\left(\alpha_{1}\right) f(z)=\frac{\alpha\left(\alpha_{1}+1\right) H\left(\alpha_{1}+2\right) f(z)+\left(1-2 \alpha_{1} \alpha\right) H\left(\alpha_{1}+1\right) f(z)-(1-\alpha)\left(\alpha_{1}-1\right) H\left(\alpha_{1}\right) f(z) f(z)}{(1-\alpha) H\left(\alpha_{1}\right) f(z) f(z)+\alpha H\left(\alpha_{1}+1\right) f(z)}$.
The result now follows from Lemma 1.1.
For $q=2$ and $s=1$, in Theorem [2.1, we get the following result in terms of the Hohlov operator.

Corollary 2.1. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in F_{b, \alpha}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\left(\frac{s\left[\left((1-\alpha) F\left(\alpha_{1}, \alpha_{2} ; \beta_{1}\right) f(t z)+\alpha F\left(\alpha_{1}+1, \alpha_{2} ; \beta_{1}\right) f(t z)\right]\right.}{t\left[(1-\alpha) F\left(\alpha_{1}, \alpha_{2} ; \beta_{1}\right) f(s z)+\alpha F\left(\alpha_{1}+1, \alpha_{2} ; \beta_{1}\right) f(s z)\right]}\right)^{1 / b} \prec \frac{s F(t z)}{t F(s z)} . \tag{2.5}
\end{equation*}
$$

For $q=2, s=1$ and $\alpha_{2}=1$, in Theorem 2.1, we get the following result in terms of the Carlson-Shaffer operator.

Corollary 2.2. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in M_{\alpha_{1}, \beta_{1}, b, \alpha}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\left(\frac{s\left[\left((1-\alpha) L\left(\alpha_{1} ; \beta_{1}\right) f(t z)+\alpha L\left(\alpha_{1}+1 ; \beta_{1}\right) f(t z)\right]\right.}{t\left[(1-\alpha) L\left(\alpha_{1} ; \beta_{1}\right) f(s z)+\alpha L\left(\alpha_{1}+1 ; \beta_{1}\right) f(s z)\right]}\right)^{1 / b} \prec \frac{s F(t z)}{t F(s z)} \tag{2.6}
\end{equation*}
$$

For $q=2, s=1, \alpha_{1}=1+m, \alpha_{2}=1$ and $\beta_{1}=1$ in Theorem 2.1, we get the following result in terms of the Ruscheweyh derivative.

Corollary 2.3. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in M_{m, b, \alpha}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\left(\frac{s\left[(1-\alpha) D^{m} f(t z)+\alpha D^{m+1} f(t z)\right]}{t\left[(1-\alpha) D^{m} f(s z)+\alpha D^{m+1} f(s z)\right]}\right)^{1 / b} \prec \frac{s F(t z)}{t F(s z)} \tag{2.7}
\end{equation*}
$$

For $q=s=1, \alpha_{1}=\beta_{1}=1$, and $\alpha=0$ in Theorem 2.1, we get
Corollary 2.4. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in S_{b}^{*}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\begin{equation*}
\left(\frac{s f(t z)}{t f(s z)}\right)^{\frac{1}{b}} \prec \frac{s F(t z)}{t F(s z)} \tag{2.8}
\end{equation*}
$$

For $q=s=1, \alpha_{1}=\beta_{1}=1$, and $\alpha=1$ in Theorem 2.1, we get
Corollary 2.5. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. The function $f \in C_{b}(\phi)$ if and only if for all $|s| \leq 1$ and $|t| \leq 1$, we have

$$
\left(\frac{f^{\prime}(t z)}{f^{\prime}(s z)}\right)^{\frac{1}{b}} \prec \frac{s F(t z)}{t F(s z)}
$$

As an immediate consequence of the above Corollary 2.4, we have
Corollary 2.6. Let $\phi(z)$ and $F(z)$ be as in Lemma 1.1. If $f \in S_{b}^{*}(\phi)$, then we have

$$
\begin{equation*}
\frac{f(z)}{z} \prec\left(\frac{F(z)}{z}\right)^{b} . \tag{2.9}
\end{equation*}
$$

Theorem 2.2. Let ϕ starlike with respect to 1 and $F(z)$ is given by (1.11) be starlike. If $f \in M_{q, s, b, \alpha}(\phi)$, then we have

$$
\begin{equation*}
\frac{(1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(z)}{z} \prec\left(\frac{F(z)}{z}\right)^{b} . \tag{2.10}
\end{equation*}
$$

Proof. Define the functions $p(z)$ and $q(z)$ by
$p(z):=\left(\frac{(1-\alpha) H_{q, s}\left(\alpha_{1}\right) f(z)+\alpha H_{q, s}\left(\alpha_{1}+1\right) f(z)}{z}\right)^{1 / b}, \quad q(z):=\left(\frac{F(z)}{z}\right)$.
Then a computation yields

$$
1+\frac{z p^{\prime}(z)}{p(z)}=1+\frac{1}{b}(\Psi(z)-1)
$$

where $\Psi_{q, s}\left(\alpha_{1}\right) f(z)$ is as defined in (2.4) and

$$
\frac{z q^{\prime}(z)}{q(z)}=\left(\frac{z F^{\prime}(z)}{F(z)}-1\right)=\phi(z)-1 .
$$

Since $f \in M_{b, \alpha}^{*}(\phi)$, we have

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{1}{b}(\Psi(a, c, z)-1) \prec \phi(z)-1=\frac{z q^{\prime}(z)}{q(z)} .
$$

The result now follows by an application of Lemma 1.2.
By taking $\phi(z)=(1+z) /(1-z), q=s=1, \alpha_{1}=\beta_{1}=1$ and $\alpha=0$ in Theorem 2.2, we get the following result of Srivastava and Lashin [20]:

Example 2.1. If $f \in S_{b}^{*}$, then

$$
\frac{f(z)}{z} \prec \frac{1}{(1-z)^{2 b}} .
$$

By taking $\phi(z)=(1+z) /(1-z), q=s=1, \alpha_{1}=\beta_{1}=1$ and $\alpha=1$ in Theorem 2.2, we get another result of Srivastava and Lashin [20]:

Example 2.2. If $f \in C_{b}$, where $C_{b}=C_{b}(\phi)$ when $\phi(z)=\frac{1+z}{1-z}$ then

$$
f^{\prime}(z) \prec \frac{1}{(1-z)^{2 b}} .
$$

References

[1] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
[2] P. L. Duren, Univalent functions, Springer, New York, 1983.
[3] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13.
[4] A. Gangadharan, V. Ravichandran and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1) (1997), 301-313.
[5] A. W. Goodman, Univalent functions Vol. I, II, Mariner, Tampa, FL, 1983.
[6] Ju. E. Hohlov and Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. , no. 10(197), 83-89,(1978).
[7] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474.
[8] W. Janowski, Extremal problem for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23(1970), 159-177.
[9] R. J. Libera, Some radius of convexity problem, Duke Math. J. 31 (1964), 143-157.
[10] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Internat. Press, Cambridge, MA.
[11] S. S. Miller and P. T. Mocanu, Differential subordinations, Dekker, New York, 2000.
[12] M. A. Nasr and M. K. Aouf,Starlike function of complex order, J. Natur. Sci. Math. 25 (1) (1985), 1-12.
[13] Ch. R. Pommerenke, Univalent functions, Vandenhoeck, ruprecht in Göttingen, 1975.
[14] V. Ravichandran, Yasar Polatoglu, Metin Bolcal and Arsu Sen, Certain Subclasses of Starlike and Convex Functions of Complex Order, (To appear)
[15] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
[16] St. Ruscheweyh, A subordination theorem for Φ-like functions, J. London Math. Soc. 13 (1976), 275-280.
[17] S. Ruscheweyh, Convolutions in geometric function theory, Presses Univ. Montréal, Montreal, Que., 1982.
[18] L. Špaček, Contribution à la théorie des functions univalents, Časopis Pěst. Mat 62 (1932) 12-19.
[19] T.N. Shanmugam, and S. Sivasubramanian, On the Fekete-Szegö problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math.,6(3), (2005), Article 71, 6 pp. [ONLINE: http://jipam.vu.edu.au/article.php?sid=544]
[20] H. M. Srivastava, and A. Y. Lashin,Some applications of the BriotBouquet differential subordination, J. Inequal. Pure Appl. Math. 6 (2) (2005), Article 41, 7 pp. (electronic).
[21] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75-85.

T.N. Shanmugam	S. Sivasubramanian
Department of Mathematics	Department of Mathematics
College of Engineering	Easwari Engineering College
Anna University, Chennai-600 025	Ramapuram, Chennai-600 08
Tamilnadu, India	Tamilnadu, India
E-mail: shan@annauniv.edu	E-mail: sivasaisastha@rediffmail.com
G. Murugusundaramoorthy	
Department of Mathematics,	
Vellore Institute of Technology,	
Deemed University,	
Vellore-632 014, India	
E-mail: gmsmoorthy@yahoo.com	

[^0]: ${ }^{1}$ Received 15 July, 2007
 Accepted for publication (in revised form) 20 September, 2007

