Carlson - Shaffer operator and their applications to certain subclass of uniformly convex functions ${ }^{1}$

G.Murugusundaramoorthy, T. Rosy and K.Muthunagai

Abstract

Making use of Carlson - Shaffer operator, we define a new subclass of uniformly convex functions with negative coefficients and obtain the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class $T S(\lambda, \alpha, \beta)$. Furthermore, partial sums $f_{k}(z)$ of functions $f(z)$ in the class $S(\lambda, \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of $f(z)$ to $f_{k}(z)$ and $f^{\prime}(z)$ to $f_{k}^{\prime}(z)$ are determined.

2000 Mathematical Subject Classification: 30C45.
Key words: Univalent, convex, starlike, uniformly convex.

1 Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

[^0]which are analytic and univalent in the open disc $U=\{z: z \in \mathcal{C}|z|<1\}$. Also denote by T the subclass of A consisting of functions of the form
\[

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0\right) \tag{1.2}
\end{equation*}
$$

\]

Following Gooodman [3, 4], Rønning [5, 6] introduced and studied the following subclasses
(i) A function $f \in A$ is said to be in the class $S_{p}(\alpha, \beta)$ of uniformly β-starlike functions if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad z \in U \tag{1.3}
\end{equation*}
$$

$-1<\alpha \leq 1$ and $\beta \geq 0$.
(ii) A function $f \in A$ is said to be in the class $\operatorname{UCV}(\alpha, \beta)$ of uniformly β-convex functions if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, z \in U \tag{1.4}
\end{equation*}
$$

and $-1<\alpha \leq 1$ and $\beta \geq 0$.
Indeed it follows from (1.3) and (1.4) that

$$
\begin{equation*}
f \in U C V(\alpha, \beta) \text { is equivalent with } z f^{\prime} \in S_{p}(\alpha, \beta) \tag{1.5}
\end{equation*}
$$

For functions $f \in A$ given by (1.1) and $g(z) \in A$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, we define the Hadamard product (or Convolution) of f and g by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, \quad z \in U . \tag{1.6}
\end{equation*}
$$

Let $\phi(a, c ; z)$ be the incomplete beta function defined by

$$
\begin{equation*}
\phi(a, c ; z)=z+\sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} z^{n}, \quad c \neq 0,-1,-2, \ldots \tag{1.7}
\end{equation*}
$$

where $(x)_{n}$ is the Pochhammer symbol defined interms of the Gamma functions, by

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}=\left\{\begin{array}{lr}
1 & \mathrm{n}=0 \tag{1.8}\\
x(x+1)(x+2) \ldots(x+n-1), & n \in N
\end{array}\right.
$$

Further, for $f \in A$

$$
\begin{equation*}
L(a, c) f(z)=\phi(a, c ; z) * f(z)=z+\sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} z^{n} \tag{1.9}
\end{equation*}
$$

where $L(a, c)$ is called Carlson - Shaffer operator [2] and the operator * stands for the hadamard product (or convolution product) of two power series as given by (1.6).

We notice that

$$
L(a, a) f(z)=f(z), \quad L(2,1) f(z)=z f^{\prime}(z)
$$

For $-1 \leq \alpha<1,0 \leq \lambda \leq 1$ and $\beta \geq 0$, we let $S(\lambda, \alpha, \beta)$ be the subclass of A consisting of functions of the form (1.1) and satisfying the analytic criterion

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-\alpha\right\} \\
& >\beta\left|\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right|, \quad z \in U \tag{1.10}
\end{align*}
$$

where $L(a, c) f(z)$ is given by (1.9). We also let $T S(\lambda, \alpha, \beta)=S(\lambda, \alpha, \beta) \cap T$.
By suitably specializing the values of $\lambda,(a)$ and (c), the class $S(\lambda, \alpha, \beta)$ can be reduces to the class studied earlier by Rønning [5, 6]. Also choosing $\alpha=0$ and $\beta=1$ the class coincides with the classes studied in [10] and [11] respectively.

The main object of this paper is to study the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class $\operatorname{TS}(\lambda, \alpha, \beta)$. Furthermore, partial sums $f_{k}(z)$ of functions $f(z)$ in the class $S(\lambda, \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of $f(z)$ to $f_{k}(z)$ and $f^{\prime}(z)$ to $f_{k}^{\prime}(z)$ are determined.

2 Basic Properties

In this section we obtain a necessary and sufficient condition for functions $f(z)$ in the classes $S(\lambda, \alpha, \beta)$ and $T S(\lambda, \alpha, \beta)$.

Theorem 2.1. A function $f(z)$ of the form (1.1) is in $S(\lambda, \alpha, \beta)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}}\left|a_{n}\right| \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

$-1 \leq \alpha<1, \quad 0 \leq \lambda \leq 1, \beta \geq 0$.
Proof. It sufficies to show that

$$
\begin{aligned}
& \beta\left|\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right| \\
& \quad-\operatorname{Re}\left\{\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right\} \\
& \quad \leq 1-\alpha
\end{aligned}
$$

We have

$$
\begin{gathered}
\beta\left|\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right| \\
-\operatorname{Re}\left\{\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right\} \\
\leq(1+\beta)\left|\frac{z(L(a, c) f(z))^{\prime}+\lambda z^{2}(L(a, c) f(z))^{\prime \prime}}{(1-\lambda) L(a, c) f(z)+\lambda(z L(a, c) f(z))^{\prime}}-1\right| \\
\leq \frac{(1+\beta) \sum_{n=2}^{\infty}(n-1)[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}}\left|a_{n}\right|}{1-\sum_{n=2}^{\infty}[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}}\left|a_{n}\right|} .
\end{gathered}
$$

This last expression is bounded above by $(1-\alpha)$ if

$$
\sum_{n=2}^{\infty}[1+\lambda(n-1)][n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}}\left|a_{n}\right| \leq 1-\alpha
$$

and hence the proof is complete.
Theorem 2.2. A necessary and sufficient condition for $f(z)$ of the form (1.2) to be in the class $T S(\lambda, \alpha, \beta),-1 \leq \alpha<1,0 \leq \lambda \leq 1, \beta \geq 0$ is that

$$
\begin{equation*}
\sum_{n=2}^{\infty}(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 1, we need only to prove the necessity. If $f \in T S(\lambda, \alpha, \beta)$ and z is real then

$$
\left.\begin{array}{l}
\frac{1-\sum_{n=2}^{\infty} n[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} z^{n-1}}-\alpha \geq \\
\geq \beta\left|\frac{\sum_{n=2}^{\infty}(n-1)[1+\lambda(n-1)]}{1-\sum_{n=2}^{\infty}[1+\lambda(n-1)] \frac{(a)_{n-1}}{(c)_{n-1}}\left|a_{n}\right|}\right| \\
(c)_{n-1} \\
\left|a_{n}\right|
\end{array}\right)
$$

Letting $z \rightarrow 1$ along the real axis, we obtain the desired inequality

$$
\sum_{n=2}^{\infty}(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n} \leq 1-\alpha
$$

Theorem 2.3. Let $f(z)$ defined by (1.2) and $g(z)$ defined by $g(z)=z-$ $\sum_{n=2}^{\infty} b_{n} z^{n}$ be in the class TS (λ, α, β). Then the function $h(z)$ defined by

$$
h(z)=(1-\mu) f(z)+\mu g(z)=z-\sum_{n=2}^{\infty} q_{n} z^{n}
$$

where $q_{n}=(1-\mu) a_{n}+\mu b_{n}, \quad 0 \leq \mu<1$ is also in the class TS (λ, α, β).

Proof. Let the function

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n}, \quad a_{n, j} \geq 0, \quad j=1,2 \tag{2.3}
\end{equation*}
$$

be in the class $T S(\lambda, \alpha, \beta)$. It is sufficient to show that the function $g(z)$ defined by

$$
g(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z), \quad 0 \leq \mu \leq 1
$$

is in the class $T S(\lambda, \alpha, \beta)$. Since

$$
g(z)=z-\sum_{n=2}^{\infty}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] z^{n}
$$

an easy computation with the aid of Theorem 2.2 gives,

$$
\begin{aligned}
\sum_{n=2}^{\infty}[1+ & \lambda(n-1)][n(\beta+1)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} \mu a_{n, 1} \\
& +\sum_{n=2}^{\infty}[1+\lambda(n-1)][n(\beta+1)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}}(1-\mu) a_{n, 2} \\
& \leq \mu(1-\alpha)+(1-\mu)(1-\alpha) \\
& \leq 1-\alpha
\end{aligned}
$$

which implies that $g \in T S(\lambda, \alpha, \beta)$. Hence $T S(\lambda, \alpha, \beta)$ is convex.
Theorem 2.4. (Extreme points) Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{n}(z)=z-\frac{(1-\alpha)(c)_{n-1}}{(1+n \lambda-\lambda)[n(1+\beta)-(\alpha+\beta)](a)_{n-1}} z^{n} \text { for } n=2,3,4, \ldots \tag{2.4}
\end{equation*}
$$

Then $f(z) \in T S(\lambda, \alpha, \beta)$ if and only if $f(z)$ can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z)$, where $\mu_{n} \geq 0$ and $\sum_{n=1}^{\infty} \mu_{n}=1$.

The proof of Theorem 2.4, follows on lines similar to the proof of the theorem on extreme points given in Silverman [8].

Next we prove the following closure theorem.

Theorem 2.5. (Closure theorem) Let the functions $f_{j}(z)(j=1,2, \ldots m)$ defined by (2.3) be in the classes $\operatorname{TS}\left(\lambda, \alpha_{j}, \beta\right)(j=1,2, \ldots m)$ respectively. Then the function $h(z)$ defined by

$$
h(z)=z-\frac{1}{m} \sum_{n=2}^{\infty}\left(\sum_{j=1}^{m} a_{n, j}\right) z^{n}
$$

is in the class $T S(\lambda, \alpha, \beta)$, where $\alpha=\min _{1 \leq j \leq m}\left\{\alpha_{j}\right\}$ where $-1 \leq \alpha_{j}<1$.
Proof. Since $f_{j}(z) \in T S\left(\lambda, \alpha_{j}, \beta\right)(j=1,2,3, \ldots m)$ by applying Theorem 2.2, to (2.3) we observe that

$$
\begin{gathered}
\sum_{n=2}^{\infty}(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}}\left(\frac{1}{m} \sum_{j=1}^{m} a_{n, j}\right) \\
=\frac{1}{m} \sum_{j=1}^{m}\left(\sum_{n=2}^{\infty}(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)] \frac{(a)_{n-1}}{(c)_{n-1}} a_{n, j}\right) \\
\leq \frac{1}{m} \sum_{j=1}^{m}\left(1-\alpha_{j}\right) \leq 1-\alpha
\end{gathered}
$$

which in view of Theorem 2.2, again implies that $h(z) \in T S(\lambda, \alpha, \beta)$ and so the proof is complete.

Theorem 2.6. Let $f \in T S(\lambda, \alpha, \beta)$. Then

1. f is starlike of order $\delta(0 \leq \delta<1)$ in the disc $|z|<r_{1}$; that is, $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\delta, \quad\left(|z|<r_{1} ; 0 \leq \delta<1\right)$, where

$$
r_{1}=\inf _{n \leq 2}\left\{\frac{(a)_{n-1}}{(c)_{n-1}}\left(\frac{1-\delta}{n-\delta}\right) \frac{(1+n \lambda-\lambda)[n(1+\beta)-(\alpha+\beta)]}{1-\alpha}\right\}^{\frac{1}{n-1}}
$$

2. f is convex of order $\delta(0 \leq \delta<1)$ in the disc $|z|<r_{2}$, that is $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta,\left(|z|<r_{2} ; 0 \leq \delta<1\right)$, where

$$
r_{2}=\inf _{n \leq 2}\left\{\frac{(a)_{n-1}}{(c)_{n-1}} \frac{(1-\delta)(1+n \lambda-\lambda)[n(1+\beta)-(\alpha+\beta)]}{n(n-\delta)}\right\}^{\frac{1}{n-1}}
$$

Each of these results are sharp for the extremal function $f(z)$ given by (2.4).
Proof. Given $f \in A$, and f is starlike of order δ, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\delta \tag{2.5}
\end{equation*}
$$

For the left hand side of (2.5) we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}}
$$

The last expression is less than $1-\delta$ if

$$
\sum_{n=2}^{\infty} \frac{n-\delta}{1-\delta} a_{n}|z|^{n-1}<1
$$

Using the fact, that $f \in T S(\lambda, \alpha, \beta)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{1-\alpha} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n}<1
$$

We can say (2.5) is true if

$$
\frac{n-\delta}{1-\delta}|z|^{n-1}<\frac{(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{1-\alpha} \frac{(a)_{n-1}}{(c)_{n-1}}
$$

Or, equivalently,

$$
|z|^{n-1}<\frac{(1-\delta)(1+\lambda(n-1))[n(1+\beta)-(\alpha+\beta)]}{(n-\delta)(1-\alpha)} \frac{(a)_{n-1}}{(c)_{n-1}}
$$

which yields the starlikeness of the family.
(ii) Using the fact that f is convex if and only if $z f^{\prime}$ is starlike, we can prove (ii), on lines similar to the proof of (i).

3 Partial Sums

Following the earlier works by Silverman [8] and Silvia [9] on partial sums of analytic functions. We consider in this section partial sums of functions in the class $\operatorname{TS}(\lambda, \alpha, \beta)$ and obtain sharp lower bounds for the ratios of real part of $f(z)$ to $f_{k}(z)$ and $f^{\prime}(z)$ to $f_{k}^{\prime}(z)$.

Theorem 3.1. Let $f(z) \in T S(\lambda, \alpha, \beta)$ be given by (1.1) and define the partial sums $f_{1}(z)$ and $f_{k}(z)$, by

$$
\begin{equation*}
f_{1}(z)=z ; \text { and } f_{k}(z)=z+\sum_{n=2}^{k} a_{n} z^{n}, \quad(k \in N / 1) \tag{3.1}
\end{equation*}
$$

Suppose also that

$$
\sum_{n=2}^{\infty} d_{n}\left|a_{n}\right| \leq 1
$$

where

$$
\begin{equation*}
d_{n}:=\frac{(1+\lambda(n-1))[n(\alpha+\beta)-(\alpha+\beta)]}{(1-\alpha)} \frac{(a)_{n-1}}{(c)_{n-1}} \tag{3.2}
\end{equation*}
$$

Then $f \in T S(\lambda, \alpha, \beta)$. Furthermore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{k}(z)}\right\}>1-\frac{1}{d_{k+1}} z \in U, k \in N \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{k}(z)}{f(z)}\right\}>\frac{d_{k+1}}{1+d_{k+1}} . \tag{3.4}
\end{equation*}
$$

Proof. For the coefficients d_{n} given by (3.2) it is not difficult to verify that

$$
\begin{equation*}
d_{n+1}>d_{n}>1 \tag{3.5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\sum_{n=2}^{k}\left|a_{n}\right|+d_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right| \leq \sum_{n=2}^{\infty} d_{n}\left|a_{n}\right| \leq 1 \tag{3.6}
\end{equation*}
$$

by using the hypothesis (3.2). By setting

$$
\begin{align*}
g_{1}(z) & =d_{k+1}\left\{\frac{f(z)}{f_{k}(z)}-\left(1-\frac{1}{d_{k+1}}\right)\right\} \\
& =1+\frac{d_{k+1} \sum_{n=k+1}^{\infty} a_{n} z^{n-1}}{1+\sum_{n=2}^{k} a_{n} z^{n-1}} \tag{3.7}
\end{align*}
$$

and applying (3.6), we find that

$$
\begin{align*}
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| & \leq \frac{d_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right|}{2-2 \sum_{n=2}^{n}\left|a_{n}\right|-d_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right|} \\
& \leq 1, z \in U, \tag{3.8}
\end{align*}
$$

which readily yields the assertion (3.3) of Theorem 3.1. In order to see that

$$
\begin{equation*}
f(z)=z+\frac{z^{k+1}}{d_{k+1}} \tag{3.9}
\end{equation*}
$$

gives sharp result, we observe that for $z=r e^{i \pi / k}$ that $\frac{f(z)}{f_{k}(z)}=1+\frac{z^{k}}{d_{k+1}} \rightarrow$ $1-\frac{1}{d_{k+1}}$ as $z \rightarrow 1^{-}$. Similarly, if we take

$$
\begin{align*}
g_{2}(z) & =\left(1+d_{k+1}\right)\left\{\frac{f_{k}(z)}{f(z)}-\frac{d_{k+1}}{1+d_{k+1}}\right\} \\
& =1-\frac{\left(1+d_{n+1}\right) \sum_{n=k+1}^{\infty} a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} a_{n} z^{n-1}} \tag{3.10}
\end{align*}
$$

and making use of (3.6), we can deduce that

$$
\begin{equation*}
\left|\frac{g_{2}(z)-1}{g_{2}(z)+1}\right| \leq \frac{\left(1+d_{k+1}\right) \sum_{n=k+1}^{\infty}\left|a_{n}\right|}{2-2 \sum_{n=2}^{k}\left|a_{n}\right|-\left(1-d_{k+1}\right) \sum_{n=k+1}^{\infty}\left|a_{n}\right|} \tag{3.11}
\end{equation*}
$$

which leads us immediately to the assertion (3.4) of Theorem 3.1.
The bound in (3.4) is sharp for each $k \in N$ with the extremal function $f(z)$ given by (3.9). The proof of the Theorem 3.1, is thus complete.
Theorem 3.2. If $f(z)$ of the form (1.1) satisfies the condition (2.1). Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{k}^{\prime}(z)}\right\} \geq 1-\frac{k+1}{d_{k+1}} . \tag{3.12}
\end{equation*}
$$

Proof. By setting

$$
\begin{align*}
& g(z)=d_{k+1}\left\{\frac{f^{\prime}(z)}{f_{k}^{\prime}(z)}-\left(1-\frac{k+1}{d_{k+1}}\right)\right\} \\
&=\frac{1+\frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n a_{n} z^{n-1}+\sum_{n=2}^{\infty} n a_{n} z^{n-1}}{1+\sum_{n=2}^{k} n a_{n} z^{n-1}} \\
&=1+\frac{\frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n a_{n} z^{n-1}}{1+\sum_{n=2}^{k} n a_{n} z^{n-1}} . \\
&\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n\left|a_{n}\right| \tag{3.13}\\
& 2-2 \sum_{n=2}^{k} n\left|a_{n}\right|-\frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n\left|a_{n}\right|
\end{align*}
$$

Now

$$
\left|\frac{g(z)-1}{g(z)+1}\right| \leq 1
$$

if

$$
\begin{equation*}
\sum_{n=2}^{k} n\left|a_{n}\right|+\frac{d_{k+1}}{k+1} \sum_{n=k+1}^{\infty} n\left|a_{n}\right| \leq 1 \tag{3.14}
\end{equation*}
$$

since the left hand side of (3.14) is bounded above by $\sum_{n=2}^{k} d_{n}\left|a_{n}\right|$ if

$$
\begin{equation*}
\sum_{n=2}^{k}\left(d_{n}-n\right)\left|a_{n}\right|+\sum_{n=k+1}^{\infty} d_{n}-\frac{d_{k+1}}{k+1} n\left|a_{n}\right| \geq 0 \tag{3.15}
\end{equation*}
$$

and the proof is complete.
The result is sharp for the extremal function $f(z)=z+\frac{z^{k+1}}{c_{k+1}}$.
Theorem 3.3. If $f(z)$ of the form (1.1) satisfies the condition (2.1) then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{k}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{d_{k+1}}{k+1+d_{k+1}} . \tag{3.16}
\end{equation*}
$$

Proof. By setting

$$
\begin{aligned}
g(z) & =\left[(k+1)+d_{k+1}\right]\left\{\frac{f_{k}^{\prime}(z)}{f^{\prime}(z)}-\frac{d_{k+1}}{k+1+d_{k+1}}\right\} \\
& =1-\frac{\left(1+\frac{d_{k+1}}{k+1}\right) \sum_{n=k+1}^{\infty} n a_{n} z^{n-1}}{1+\sum_{n=2}^{k} n a_{n} z^{n-1}}
\end{aligned}
$$

and making use of (3.15), we deduce that

$$
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\left(1+\frac{d_{k+1}}{k+1}\right) \sum_{n=k+1}^{\infty} n\left|a_{n}\right|}{2-2 \sum_{n=2}^{k} n\left|a_{n}\right|-\left(1+\frac{d_{k+1}}{k+1}\right) \sum_{n=k+1}^{\infty} n\left|a_{n}\right|} \leq 1
$$

which leads us immediately to the assertion of Theorem 3.3.

References

[1] E.Aqlan,J.M.Jahangiri and S.R.Kulkarni,Classes of k-uniformly convex and starlike functions, Tamkang Journal of Mathematics 35(3), (2004), 261-266.
[2] B.C.Carlson and S.B.Shaffer, Starlike and prestarlike hypergrometric functions, SIAM J.Math. Anal., 15 (2002), $737-745$.
[3] A.W. Goodman, On uniformly convex functions, Ann. polon. Math., 56 (1991), 87-92.
[4] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. \& Appl., 155 (1991),364-370.
[5] F.Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, (1993),189-196.
[6] F.Rønning, Integral representations for bounded starlike functions, Annal.Polon.Math., 60, (1995),289-297.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. , 51, (1975), 109-116.
[8] H. Silverman, Partial sums of starlike and convex functions, J. Math.Anal. \& Appl., 209 (1997), 221- 227.
[9] E.M. Silvia., Partial sums of convex functions of order α, Houston.J.Math., Math.Soc., 11(3) (1985), 397-404.
[10] K.G.Subramanian, G.Murugusundaramoorthy, P.Balasubrahmanyam and H.Silverman, Subclasses of uniformly convex and uniformly starlike functions. Math. Japonica., 42 N0.3,(1995),517-522.
[11] K.G.Subramanian, T.V.Sudharsan, P.Balasubrahmanyam and H.Silverman, Classes of uniformly starlike functions. Publ.Math.Debrecen., 53 3-4,(1998),309-315.
G.Murugusundaramoorthy, Thomas Rosy

School of Science and Humanities, Department of Mathematics
VIT University, Vellore - 632014, Madras Christian College, India.
E-mail:gmsmoorthy@yahoo.com India.
K.Muthunagai

Department of Mathematics, Hindustan College of Engineering, Chennai,
India.

[^0]: ${ }^{1}$ Received 16 August, 2007
 Accepted for publication (in revised form) 22 December, 2007

