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Abstract

In the present paper, the authors introduce two new subclasses

C
(k)(λ, α) of close-to-convex functions and QC

(k)(λ, α) of quasi-convex

functions with respect to k-symmetric points. The integral represen-

tations and convolution conditions for these classes are provided.

Some coefficient inequalities for functions belonging to these classes

and their subclasses with negative coefficients are also provided.
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1 Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞

∑

n=2

anz
n,
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which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S

denotes the subclass of A consisting of all functions which are univalent in

U. Also let T(n, p) denote the class of functions of the form

f(z) = zp −
∞

∑

l=n

al+pz
l+p (al+p ≥ 0; p, n ∈ N = {1, 2, 3, . . .}),

which are analytic in U. Write T(1, 1) simple as T.

We denote by S∗, K, C and QC the familiar subclasses of A consisting

of functions which are, respectively, starlike, convex, close-to-convex and

quasi-convex in U. Thus, by definition, we have (see, for details, [4, 6, 7, 9])

S
∗ =

{

f : f ∈ A and ℜ

{

zf ′(z)

f(z)

}

> 0 (z ∈ U)

}

,

K =

{

f : f ∈ A and ℜ

{

1 +
zf ′′(z)

f ′(z)

}

> 0 (z ∈ U)

}

,

C =

{

f : f ∈ A, ∃g ∈ S
∗, such that ℜ

{

zf ′(z)

g(z)

}

> 0 (z ∈ U)

}

,

and

QC =

{

f : f ∈ A, ∃g ∈ K, such that ℜ

{

(zf ′(z))′

g′(z)

}

> 0 (z ∈ U)

}

.

Let T(n, p, λ, α) be the subclass of T(n, p) consisting of functions f(z)

which satisfy the inequality

ℜ

{

zf ′(z) + λz2f ′′(z)

(1 − λ)f(z) + λzf ′(z)

}

> α (z ∈ U)

for some α (0 ≤ α < 1) and λ (0 ≤ λ ≤ 1). Altintas [1] once introduced

and investigated the class T(n, 1, λ, α). In a later paper, Altintas, Irmak

and Srivastava [2] derived some other interesting properties of the class

T(n, p, λ, α). Write T(1, 1, λ, α) simple as T(λ, α).

Let C(n, λ, α) be the subclass of T(n, 1) consisting of functions f(z)

which satisfy the inequality

ℜ

{

z
λz2f ′′′(z) + (2λ + 1)zf ′′(z) + f ′(z)

λz2f ′′(z) + zf ′(z)

}

> α (z ∈ U)
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for some α (0 ≤ α < 1) and λ (0 ≤ λ ≤ 1). The class C(n, λ, α) was

introduced and investigated recently by Kamali and Akbulut [5]. Write

C(1, λ, α) simple as C(λ, α).

Sakaguchi [8] once introduced a class S∗
s of functions starlike with respect

to symmetric points, it consists of functions f(z) ∈ S satisfying

ℜ

{

zf ′(z)

f(z) − f(−z)

}

> 0 (z ∈ U).

Following him, many authors discussed this class and its subclasses. And a

function f(z) ∈ A is in the class Cs if and only if zf ′(z) ∈ S∗
s.

Let S
(k)
s (α) denote the class of functions in S satisfying the following

inequality

ℜ

{

zf ′(z)

fk(z)

}

> α (z ∈ U),

where 0 ≤ α < 1, k ≥ 2 is a fixed positive integer and fk(z) is defined by

the following equality

(1.2) fk(z) =
1

k

k−1
∑

ν=0

ε−νf(ενz) (ε = exp(2πi/k); z ∈ U).

And a function f(z) ∈ A is in the class C
(k)
s (α) if and only if zf ′(z) ∈ S

(k)
s (α).

The class S
(k)
s (α) of functions starlike with respect to k-symmetric points

of order α was studied by Chand and Singh [3], and the class C
(k)
s (α) of

functions convex with respect to k-symmetric points of order α is a corre-

sponding special class defined in [10].

Motivated by the classes T(λ, α), C(λ, α), S
(k)
s (α) and C

(k)
s (α), we now

introduce and investigate the following subclasses of A with respect to k-

symmetric points, and obtain some interesting results.

Definition 1. Let C(k)(λ, α) denote the class of functions in A satisfying

the following inequality

(1.3) ℜ

{

zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

}

> α (z ∈ U),
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where 0 ≤ α < 1, 0 ≤ λ ≤ 1, k ≥ 2 is a fixed positive integer and fk(z) is

defined by equality (1.2).

Definition 2. Let QC
(k)(λ, α) denote the class of functions in A satisfying

the following inequality

ℜ

{

z
λz2f ′′′(z) + (2λ + 1)zf ′′(z) + f ′(z)

λz2f ′′
k (z) + zf ′

k(z)

}

> α (z ∈ U),

where 0 ≤ α < 1, 0 ≤ λ ≤ 1, k ≥ 2 is a fixed positive integer and fk(z) is

defined by equality (1.2).

For convenience, we write C(k)(λ, α) ∩ T simple as C
(k)
T

(λ, α) , and

QC
(k)(λ, α) ∩ T simple as QC

(k)
T

(λ, α) .

In our proposed investigation of functions in the classes C(k)(λ, α) and

QC
(k)(λ, α), we shall also make use of the following lemmas.

Lemma 1. Let γ ≥ 0 and f ∈ C, then

F (z) =
1 + γ

zγ

∫ z

0

f(t)tγ−1dt ∈ C.

This lemma is a special case of Theorem 4 in [11].

Lemma 2 [6]. Let 0 < λ ≤ 1 and f ∈ QC, then

F (z) =
1

λ
z1− 1

λ

∫ z

0

f(t)t
1

λ
−2dt ∈ QC ⊂ C.

Lemma 3. C(k)(λ, α) ⊂ C ⊂ S.

Proof. Let F (z) = (1 − λ)f(z) + λzf ′(z), Fk(z) = (1 − λ)fk(z) + λzf ′
k(z)

with f(z) ∈ C(k)(λ, α), substituting z by εµz in (1.1) (µ = 0, 1, 2, . . . , k−1),

we get

(1.4) ℜ

{

εµzf ′(εµz) + λ(εµz)2f ′′(εµz)

(1 − λ)fk(εµz) + λεµzf ′
k(ε

µz)

}

> α (z ∈ U).

Note that fk(ε
µz) = εµfk(z) and f ′

k(ε
µz) = f ′

k(z), thus, inequality (1.4) can

be written as

(1.5) ℜ

{

zf ′(εµz) + λz2εµf ′′(εµz)

(1 − λ)fk(z) + λzf ′
k(z)

}

> α (z ∈ U).
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Letting µ = 0, 1, 2, . . . , k − 1 in (1.5), respectively, and summing them we

can obtain

ℜ

{

1

k

k−1
∑

µ=0

zf ′(εµz) + λz2εµf ′′(εµz)

(1 − λ)fk(z) + λzf ′
k(z)

}

> α (z ∈ U),

or equivalently,

ℜ

{

zf ′
k(z) + λz2f ′′

k (z)

(1 − λ)fk(z) + λzf ′
k(z)

}

= ℜ

{

zF ′
k(z)

Fk(z)

}

> α (z ∈ U),

that is Fk(z) ∈ S∗(α), which is the usual class of starlike functions of order α

in U. Note that S∗(0) = S∗, this implies that F (z) = (1−λ)f(z)+λzf ′(z) ∈

C. We now split it into two cases to prove.

Case 1. When λ = 0. It is obvious that f(z) = F (z) ∈ C.

Case 2. When 0 < λ ≤ 1. From F (z) = (1 − λ)f(z) + λzf ′(z) and

0 < λ ≤ 1, we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

F (t)t
1

λ
−2dt.

Since γ = 1
λ
− 1 ≥ 0, by Lemma 1, we obtain that f(z) ∈ C. Hence

C(k)(λ, α) ⊂ C ⊂ S, and the proof of Lemma 3 is complete.

By means of Lemma 2, using the similar method as in Lemma 3, we

may prove the following Lemma.

Lemma 4. QC
(k)(λ, α) ⊂ QC ⊂ C.

In the present paper, we shall provide the integral representations and

convolution conditions for the classes C(k)(λ, α) and QC
(k)(λ, α), we shall

also provide some coefficient inequalities for functions belonging to these

classes and their subclasses with negative coefficients.

2 Integral Representations

At first, we give the integral representations of functions belonging to the

classes C(k)(λ, α) and QC
(k)(λ, α).
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Theorem 1. Let f(z) ∈ C(k)(λ, α) with 0 < λ ≤ 1, then we have

(2.1) fk(z) =
1

λ
z1− 1

λ

∫ z

0

exp

{

1

k

k−1
∑

µ=0

∫ εµu

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

u
1

λ
−1du,

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) = 0,

|ω(z)| < 1.

Proof. Suppose that f(z) ∈ C(k)(λ, α), it is easy to know that the condition

(1.3) can be written as

zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

≺
1 + (1 − 2α)z

1 − z
,

where ” ≺ ” stands for the usual subordination, it follows that

(2.2)
zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

=
1 + (1 − 2α)ω(z)

1 − ω(z)
,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1. By applying the

similar method as in Lemma 3 to equality (2.2), we can obtain

(2.3)
(1 − λ)zf ′

k(z) + λz(zf ′
k(z))′

(1 − λ)fk(z) + λzf ′
k(z)

=
1

k

k−1
∑

µ=0

1 + (1 − 2α)ω(εµz)

1 − ω(εµz)
,

from equality (2.3), we get

(2.4)
(1 − λ)f ′

k(z) + λ(zf ′
k(z))′

(1 − λ)fk(z) + λzf ′
k(z)

−
1

z
=

1

k

k−1
∑

µ=0

2(1 − α)ω(εµz)

z(1 − ω(εµz))
.

Integrating equality (2.4), we have

log

{

(1 − λ)fk(z) + λzf ′
k(z)

z

}

=
1

k

k−1
∑

µ=0

∫ z

0

2(1 − α)ω(εµζ)

ζ(1 − ω(εµζ))
dζ

=
1

k

k−1
∑

µ=0

∫ εµz

0

2(1 − α)ω(t)

t(1 − ω(t))
dt,
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that is,

(2.5) (1 − λ)fk(z) + λzf ′
k(z) = z · exp

{

1

k

k−1
∑

µ=0

∫ εµz

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

.

From equality (2.5), we can get equality (2.1) easily. Hence the proof of

Theorem 1 is complete.

Theorem 2. Let f(z) ∈ C(k)(λ, α) with 0 < λ ≤ 1, then we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

(2.6) ·
1 + (1 − 2α)ω(ζ)

1 − ω(ζ)
dζu

1

λ
−2du,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Proof. Suppose that f(z) ∈ C(k)(λ, α), from equalities (2.2) and (2.5), we

can get

(1 − λ)f ′(z) + λ(zf ′(z))′ =
(1 − λ)fk(z) + λzf ′

k(z)

z
·
1 + (1 − 2α)ω(z)

1 − ω(z)

= exp

{

1

k

k−1
∑

µ=0

∫ εµz

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

·
1 + (1 − 2α)ω(z)

1 − ω(z)
.

Integrating the above equality, we can get equality (2.6) easily.

Similarly, for the class QC
(k)(λ, α), we have

Corollary 1. Let f(z) ∈ QC
(k)(λ, α) with 0 < λ ≤ 1, then we have

fk(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

dζu
1

λ
−2du,

where fk(z) is defined by equality (1.2), ω(z) is analytic in U and ω(0) = 0,

|ω(z)| < 1.
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Corollary 2. Let f(z) ∈ QC
(k)(λ, α) with 0 < λ ≤ 1, then we have

f(z) =
1

λ
z1− 1

λ

∫ z

0

∫ u

0

1

ξ

∫ ξ

0

exp

{

1

k

k−1
∑

µ=0

∫ εµζ

0

2(1 − α)ω(t)

t(1 − ω(t))
dt

}

·
1 + (1 − 2α)ω(ζ)

1 − ω(ζ)
dζdξu

1

λ
−2du,

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

3 Convolution Conditions

In this section, we give the convolution conditions for the classes C(k)(λ, α)

and QC
(k)(λ, α). Let f, g ∈ A, where f(z) is given by (1.1) and g(z) is

defined by

g(z) = z +
∞

∑

n=2

bnzn,

then the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g)(z) = z +
∞

∑

n=2

anbnz
n = (g ∗ f)(z).

Theorem 3. A function f(z) ∈ C(k)(λ, α) if and only if

1

z

{

f ∗

{

(1 − λ)

{

z

(1 − z)2
(1 − eiθ) − [1 + (1 − 2α)eiθ]h

}

(3.1) +λz

{

z

(1 − z)2
(1 − eiθ) − [1 + (1 − 2α)eiθ]h

}′
}

(z)

}

6= 0

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (3.6).

Proof. Suppose that f(z) ∈ C(k)(λ, α), since (1.3) is equivalent to

(3.2)
zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

6=
1 + (1 − 2α)eiθ

1 − eiθ
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for all z ∈ U and 0 ≤ θ < 2π. And the condition (3.2) can be written as

1

z
{[(1 − λ)zf ′(z) + λz(zf ′(z))′](1 − eiθ) − [(1 − λ)fk(z) + λzf ′

k(z)]

(3.3) [1 + (1 − 2α)eiθ]} 6= 0.

On the other hand, it is well known that

(3.4) zf ′(z) = f(z) ∗
z

(1 − z)2
.

And from the definition of fk(z), we know

(3.5) fk(z) = (f ∗ h)(z),

where

(3.6) h(z) =
1

k

k−1
∑

υ=0

z

1 − ευz
.

Substituting (3.4) and (3.5) into (3.3), we can get (3.1) easily. This com-

pletes the proof of Theorem 3.

Similarly, for the class QC
(k)(λ, α), we have

Corollary 3. A function f(z) ∈ QC
(k)(λ, α) if and only if

1

z

{

f ∗

{

z

{

(1 − λ)

{

z

(1 − z)2
(1 − eiθ) − [1 + (1 − 2α)eiθ]h

}

+λz

{

z

(1 − z)2
(1 − eiθ) − [1 + (1 − 2α)eiθ]h

}′
}′}

(z)

}

6= 0

for all z ∈ U and 0 ≤ θ < 2π, where h(z) is given by (3.6).

4 Coefficient Inequalities

In this section, we first provide the sufficient conditions for functions be-

longing to the classes C(k)(λ, α) and QC
(k)(λ, α).
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Theorem 4. Let 0 ≤ α < 1 and 0 ≤ λ < 1. If

(4.1)
∞

∑

n=1

(1 + λnk)(nk + 1−α)|ank+1|+
∞

∑

n=2

n6=lk+1

[1 + λ(n− 1)]n|an| ≤ 1−α,

then f(z) ∈ C(k)(λ, α).

Proof. It suffices to show that

|
zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

− 1| < 1 − α.

Note that for |z| = r < 1, we have

zf ′(z) + λz2f ′′(z)

(1 − λ)fk(z) + λzf ′
k(z)

− 1| = |

∑∞

n=2[1 + λ(n − 1)](n − bn)anz
n−1

1 −
∑∞

n=2[λn + (1 − λ)]bnanzn−1
|

≤

∑∞

n=2[1 + λ(n − 1)](n − bn)|an|

1 −
∑∞

n=2[λn + (1 − λ)]bn|an|
.

where

(4.2) bn =
1

k

k−1
∑

ν=0

ε(n−1)ν =











1, n = lk + 1,

0, n 6= lk + 1.

This last expression is bounded above by 1 − α if

(4.3)
∞

∑

n=2

[1 + λ(n − 1)](n − αbn)|an| ≤ 1 − α.

Since inequality (4.3) can be written as inequality (4.1), hence f(z) satisfies

the condition (1.3). This completes the proof of Theorem 4.

Similarly, for the class QC
(k)(λ, α), we have

Corollary 4. Let 0 ≤ α < 1 and 0 ≤ λ < 1. If

∞
∑

n=1

(nk+1)(1+λnk)(nk+1−α)|ank+1|+
∞

∑

n=2

n6=lk+1

[1+λ(n−1)]n2|an| ≤ 1−α,
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then f(z) ∈ QC
(k)(λ, α).

We now provide the necessary and sufficient coefficient conditions for

functions belonging to the classes C
(k)
T

(λ, α) and QC
(k)
T

(λ, α).

Theorem 5. Let 0 ≤ α < 1, 0 ≤ λ < 1 and f(z) ∈ T, then f(z) ∈

C
(k)
T

(λ, α) if and only if

(4.4)
∞

∑

n=1

(1 + λnk)(nk + 1 − α)ank+1 +
∞

∑

n=2

n6=lk+1

[1 + λ(n − 1)]nan ≤ 1 − α.

Proof. In view of Theorem 4, we need only to prove the necessity. Suppose

that f(z) ∈ C
(k)
T

(λ, α), then from (1.3), we can get

(4.5) ℜ























1 −

∞
∑

n=2

nanzn−1 − λ

∞
∑

n=2

n(n − 1)anzn−1

1 −

∞
∑

n=2

[λn + (1 − λ)]bnanz
n−1























> α,

where bn is given by (4.2). By letting |z| = r → 1− through real values in

(4.5), we can get

1 −
∞

∑

n=2

nan − λ
∞

∑

n=2

n(n − 1)an

1 −
∞

∑

n=2

[λn + (1 − λ)]bnan

≥ α,

or equivalently,

(4.6)
∞

∑

n=2

[1 + λ(n − 1)](n − αbn)an ≤ 1 − α.

Substituting (4.2) into inequality (4.6), we can get inequality (4.4) easily.

This completes the proof of Theorem 5.

Similarly, for the class QC
(k)
T

(λ, α), we have
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Corollary 5. Let 0 ≤ α < 1, 0 ≤ λ < 1 and f(z) ∈ T, then f(z) ∈

QC
(k)
T

(λ, α) if and only if

∞
∑

n=1

(nk+1)(1+λnk)(nk+1−α)|ank+1|+
∞

∑

n=2

n6=lk+1

[1+λ(n−1)]n2|an| ≤ 1−α.
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