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A generalization of Ostrowski-Griiss type
inequality for twice differentiable mappings
in Euclidean norm?

Arif Rafiq!, Nazir Ahmad Mir! and Fiza Zafar?

Abstract

In this paper, we improve and further generalize Ostrowski-Griiss
type inequality involving twice differentiable functions. Some appli-
cations for probability density function and generalized beta random

variable are also given.
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1 Introduction

In 1938, Ostrowski [12] presented Ostrowski inequality for differentiable
mappings with bounded derivatives. Since then there is an upsurge of ob-
taining sharp bounds of this inequality in terms of variety of Lebesgue
spaces involving, at most, the first derivative which results in obtaining
some new inequalities of Ostrowski type, for example, Ostrowski-Griiss type,
Ostrowski-Cebysev type, etc. The key role in obtaining these inequalities
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has been played by Griiss inequality, Cebysev’s functional and pre- Griiss
inequality.

In 1997, Dragomir and Wang [5], by the use of the Griiss inequality
proved the following Ostrowski- Griiss type integral inequality.

Theorem 1.1. Let f : I — R, where I C R is an interval, be a mapping
differentiable in the interior I° of I, and let a,b € I° with a < b. If v <
' <T, z€la,b] for some constants v,T' € R, then

f@»—g%gjf@ﬁ“—iﬁ%figﬁ(x_ggj)

a

(1) < 0-a -7,
for all x € [a,b].

This inequality provides a connection between Ostrowski inequality [12]
and the Griiss inequality [6].

The inequality (1.1) has been further extended by P. Cerone, S. S.
Dragomir and J. Roumeliotis [2] for twice differentiable mappings as fol-

lows:

Theorem 1.2. Let f: [ — R, where I C R is an interval. Suppose that
f is twice differentiable in the interior I of I, and let a,b € I with a < b.

If
v< f(x) <T,

for some constants v,I" € R, then

o (532 et
- (fﬂ - a;b) f (@)= biCL]f(t)dt

I

1
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for all z € [a, b].

For a generalization of (1.2), see [13] by A. Rafiq, N. A. Mir and Fiza

Zafar.

In 2000, M. Mati¢, J. Pecari¢ and N. Ujevi¢ [9], by the use of pre-Griiss
inequality improved Theorem 1.2 as follows:

Theorem 1.3. Let the assumptions of Theorem[1.2 hold, then for all x €

la,b], we have

‘f(x) + ((b ;4a)2 +% (x_ a—2|—b)2> f/(bl)):f(a)
_(x‘a§b>f@0—bim7ﬂww

(F—"}/)l 2 2
(18) < S AVERTE

b—a a+b

l= 5 and & = x — 5

This result has been further improved by X. L. Cheng in [3] as follows:

Theorem 1.4. Let the assumptions of Theorem 1.3 hold. Then for all

x € [a,b], we have

b—a)? 1 a+b\*\ f(b) = fa)
|f($)+< 24 +§(x_ 2 )) b—a

(o= ) F @) = [t
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where
( 3(b1—a) (‘(x a) (z — ) (b _75”)‘
€ (6.b.5) = +<ﬁ(b—a)+(a:—“7))), a<zr<3(20+0),
3 (a+2b) <w <b,
| sits (B0-0’+ (@-2)")", 1a+d) <o <to+2).

Further, in [9] we can find the special cases of (1.3) i.e., midpoint and
trapezoid inequalities in the form of following corollary:

Corollary 1.1. Let the assumptions of Theorem|[1.3 hold. Then
b

H(*5) g e-a(fo-rw) -1 [roa

(1.6) (T =) (b—a)”.

1
< —
~6V5

Moreover, in [14], a sharp Simpson’s inequality for absolutely continuous
functions with derivatives, which belong to Lo (a,b) was given as follows:

Theorem 1.5. Let f : [a,b] — R be an absolutely continuous function,
whose deriwative f' € Ly (a,b). Then

e GE 4f(“+b>+f<b>}—/bf<t>dt
=

[‘ > (s (b)f(a))2r
6

2 b—a

N

’

(1.7) <

f
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The inequality is sharp in the sense that the constant % cannot be replaced

by a smaller one.

We know that for two mappings f, g : [a,b] — R, the Cebysev functional

is defined as
T(f /f dt——/f dt— g(t)dt,

provided that f, g and fg are integrable on [a, b] .

Also in [9], we can find the pre-Griiss inequality as

T (f,9) <T(f, /)T (9,9),
where f,g € Lya,b] and T (f,g) is the CebySev’s functional as defined

above.
Moreover, we will use the Korkine’s identity (see [8] & [10, p. 296])

which is defined as
b b b

i [foawa— . [ [

—Qa
a a

1 b b
- o / / (F () — £ () (g () — g (s)) dtds,

provided that f, ¢ : [a,b] — R are measurable and all the involved integrals
exists.

In this paper, we improve and further generalize, by the use of Cebysev’s
functional, the Mati¢ et al. [9] results by providing first membership of
the right side of in terms of Euclidean norm. The bound in is
given in terms of functions whose derivatives are bounded whereas the right
membership of the new inequality is in terms of larger class of absolutely
continuous functions whose second derivative f” € Ls (a,b) which enlarges
the applicability of the underlying quadrature rules. Some applications for
probability density function and generalized beta random variable are also

given.
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2 Main Results

Theorem 2.1. Let f : [a,b] — R be a mapping whose first derivative is
absolutely continuous and the second derivative f" € Lo (a,b). Then we

have the inequality

a-n[r@- (- 52) 1 ]+l LO
_ [i(Sh—l)(b—a)Z_%(l_h) <x_a;tb)2 f/(b[)):f(a)

b
1
—b_a/f(t)dt

2 1 9 1 x—aTer ’
(b—a) m(4—15h+15h)+ﬂ(2—3h)(1—h) —

+ih(1—h> (xb_—?b> ] [bia‘f 2_ (Wﬂ

1 2 1 2
SC =) (b—a)?|—— (4—15h+1
2( v) (b —a) [2880( 5h 5h)

IN

"

IN

1

2 41 2
1 v\l v —
+ﬂ(2—3h)(1—h)(b_a> +Zh(1—h)<b_a ,

(2.1) if v < f'(t) <T, almost everywhere t on (a,b),

forallz € [a+h%5% b—h4] and h € [0,1].

Proof. We defined in [13], the following kernel K : [a,b]” — R

K (z,t) = %(t_ <a+hb_Ta)>2, if t € [a, ]

- %(t— (b—hb;a))Q, itte (zb).
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Using Korkine’s identity for K and f”, we obtain

K K
b—a/ (x,t) f (t)dt — b—a/ a:tt /f

K (0,0) = K (2,9)) (1" (1) = " (s)) dids,

(2.2) =

for all # € [a+ h’%5% b—h%%] and h € [0,1] .Further in [13], we have
developed the following identities:

+§h2 (b a) (f ®)—f (@)

b

bia/K(I t)d 214(3h2_3h+ )(b_a)2+%(1_h) (x_a;—b) |

a

and
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for all z € [a+ h%5%,b— h%5%] and h € [0,1].
Using the Cauchy-Bunyakowski-Schwartz inequality for double integrals,

we may write

N / / (K o.0) = K (2,9) (£ (0= () aeds
< (2(b1a>2/b/b<f<<x,t>f<< ) dtds)é
x (Q(bla)2 / / (F0-1) auaz5>é
However,

(2.5) YO // (z,1) (2, 5))* dtds
_ bla/K(xtdt( a/bet )2,

(2.6) (ba/K:ct )

=(b—a) {576 (1 — 6h + 15h — 18R° + 9R*)

2 4
—(1-4 2 _3p3) | —2 ~(1—h)? 2
+57 (1 —4h+6h 3h)<b_a>+4( h)(ba>],
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and
b
! /KQ( t)dt
b—a o
1 b—a\\’ b—a °
= — - h b—nh -
i (o (+5%)) + (125 -)
41 (b= a)°
16 '
Takingt:x—%rb,we have
b— 1
x—(a—l—h a) = t+=(1—=h)(b—a),
2 2
— 1
b—thG—x = SU=hb-a) -t
Thus,

5 5
(x—(a+hb;a)> +(b—hb;a—x)
1 S| °
= (t+§(1—h)(b—a)) +<§(1—h)(b—a)—t) )
For real numbers A and B, we have
A%+ B* = (A+ B) |(4%+ BY)’ - (AB)® - AB (4*+ B%)|.

Now,if A=t+3(1—h)(b—a), B=1(1—h)(b—a)—t, then

A2+ B = (t+%(1—h)(b—a)> +(%(1—h)(b—a)—t>
- 2t2+(1_h>22(b_a)2,
AB - %(1—h)2(b—a)2—t2,
A+B = (1-h)(b—a).

29
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Thus,
o (oen5)) o (oo a5 )
= 5(1—h)(b—a)® {% (1-h)'+ % (1—h)? <wb__a?+b>2 + (xb_?y] .

Therefore,

(2.7) b—a/K (x,t)d

1
= —(b—a {o (1 — 5h + 10h* — 10R* + 5h*)

( b_—a> 1_h)< b_—; )]

Using (2.6) and in (2.5), we get

(2.8) ﬁ//(K(w,t)—K(w,s))thds

_ ot | Lo o Lo oy (7
= (b—a) [2880(4 15h+15h)+24(2 5h+3h)<b

—a
4

~h(l—nh 2 .

+4 ( )(b—CL)]

l\DI»—t

Moreover,
b b
(2.9) %b—ia)Q / / (w7 (s))thds
= - (FE)
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Using (2.3 —2.5]2.8-2.9)) ,we deduce the first inequality.
Moreover, if v < f” (t) < T almost everywhere t on (a, b) , then, by using

Griiss inequality, we have

OSbT/f Hdt— | +— /f S}L(F—V)Z,

which proves the last inequality of :

Remark 2.1. (i) We can get the best estimation from (2.1)), only when

__ a+b .
xr = 5 1.€.,

a+b)+hf(a)+f(b)_2_14<3h_1)<b_ )2f<2_£ (@)

[N

| , 1 e (Fo-f @Y
Sm(b—a) (4 — 15h + 15R7) [b_a‘ J(T)]
P N2 2\3

< mAT-N0-a) (4 — 15h + 15h2) 2,
(2.10) if v < f(t) <T, almost everywhere t on (a,b).

As
4 —15h +15R% < 4, YV h €[0,1].
and is minimum for h = %, implies

1 1 1

—— (4 — 15h + 15h%)>

48v/5 4 ) < = 245

Thus (2.1) shows an overall improvement of the inequality obtained by
Matic¢ et al. [9].
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(it) For h =1, i.e., x =%t (2.1) gives

POLETO L0 (£ )~ £ @) ~ = /f(t)dt

IN

1 2| 1 e (F0) -1 @)

T\/B(b_a) [m”f ||2—( b—a )]
1 2

(211)of ~ < f"(t) < T, almost everywhere t on (a,b),

which is perturbed trapezoid inequality (corrected trapezoid rule)and it
s not difficult to see that it is better than the simple trapezoid inequal-

1ty.

(iti) For h =0 and x = “£, (2.1) gives
H(52) 500 (P 0 -7 @) - = [r0a
1 9 :
= T\/g(b_a> [b—a

2 24

> (F - f @)

2_( b—a )]
LF b 2
24\/5( —7)(b—a)”,

(2.12) if ~ < f'(t) <T, almost everywhere t on (a,b).

1 H "

which is perturbed mid-point inequality.

(iv) For h =1 and x = “T“’, (2.1) gives

a atb ! '
f()+2f(42)+f(b)—4—18(b—a)<f(b)—f(a)>_ SRk

< o [l (18T

2
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< (C—=7)(b—a)*,

o
96+/5
(2.13) if y<[f(t)<T

which 1s a linear combination of Trapezoid and Mid-point rule.

, almost everywhere t on (a,b) .

(v) For h=3 and v = “£, (2.1) gives

a a+b
£ >+4f(62 )H(b)—bia/f(t)dt

=

1 1 ez (F )= @\
< Sna [b—a ‘(T)] |
1 2

(2.14) if v < f(t)<T, almost everywhere t on (a,b).

which is a variant of Simpson’s inequality for twice differentiable func-
tion f, " is integrable and there exist constants v,I" € R such that
y<f(t) <T, L€ (a,b).

The estimations (2.10),(2.11),(2.12),(2.13) and are expressed

in terms of second derivative of the integrand which are useful when the

higher derivatives of f does not exist or are very large at some points in the
domain. Moreover, the three point quadrature rule (2.13) which is a linear
combination of Trapezoid and Mid-point rule, offers better estimations than
the simple three point Simpson’s rule (2.14).

Remark 2.2. In [9], the result corresponding to (2.11) was given, but with
6\_f in place of our factor 4\f showing an improvement of factor Z as it
can be seen from (1.6). Also in [3], (2.11) was giwven with a factor of 18\[

which shows that (2.11) also offers better estimation than as given in [3].

Moreover, we have also been able to present bounds for three point quadrature

rules as given in (2.13) and (2.14) where (2.14) is a extension of (1.7) for

twice differentiable mappings.
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3 Applications

3.1 Application in Numerical integration

Let I, :a=ag <21 <+ < xp_1 <x, =b be a division of the interval

la,b] and h; = x4 —x; = h = (=a) " = 0,---,n — 1, then we have the

n )

following quadrature formula.

Theorem 3.1. Let I, be the subdivision of the interval [a,b] and let the

assumptions of Theorem 2.1 hold. Then,
b

/f@mv—u—ahgép@»—(@—@igﬁﬂf%@]

a

+i;0 im (30 —1) — % (1-9) (&- - %) ] (f/ (zir1) — f (bm)
_5g ‘_ [f () + f(xi1)]

IN

b—a\’[ 1 9
5530 (4 —156 +156%) +

2

1 n—1 &  Zitwig 2
+5 (2-30) (1-9) > (T)

1=0

z - ”Z (f/ (@is1) — f (xl)>2]

n

Proof. Apply inequality (2.1) on the interval [z;, z;41], 7 =0,--- ,n—1 to
get,

Li+1

[ r@i-a-anre - (6- =5 1 @)

T
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24h2 (36 —1) — % (1—0) (fz’ - %)1 <f, (wis1) = f (a:z))

_5g Lf (23) + f (ziga)]

<ni |2 (4 — 156 + 150%) +i(2—35)(1—5) G-t
= 12880 24 h

1
2

- ><—& ;)] [ / (f”(t))zdt(f,(xiJrl)hf/(xi))Q] |

Z;

forall 1=0,---,n—1.
Summing over ¢ from 0 to n—1 , using triangular inequality and Cauchy-

Schwartz discrete inequality, we get,

R(F.F' 10 .0)
/ Fod-a-an 7@ - (6~ 5) 1)

h2 (30 — 1) — % (1-19) (é} - n +xi+1>2] (f/ (@ir1) — f (m))

24

;

2

5 [f (@) + f ()]

i\ 2
! (4 —155+1552)+i(2—35)(1—5) G-t
2330 24 h

1\ 2\ 2
1 éﬁi_ﬂﬁi-‘rxiﬂ 412
dsaa (452 )) |

—

[SJ[S]

<h

I
=)
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=

N

Tit+1

i
L

(¢ ) - (Ll L)

S
I
o

T

< 2 L(4—156+1552) +i(2—35)(1—5)n1 G-
=" 2880 24 .

N[ =

2

, ”Z‘:l (f/ (@is1) = f (ffi)>2]

7=

1 n—1 52_%4% ,
+15(1—5);(—h ) [th

7=

Thus, we get the required result.

Remark 3.1. Note that if we choose § = 1, & = “552 then we get the
quadrature rule which is a linear combination of midpoint rule and trapezoid
rule and it offers the best estimate.

3.2 Application for Probability Density Functions

Let X be a random variable having the p.d.f f : [a,0] — R, and the

cumulative distribution function F': [a,b] — [0, 1] , i.e.,

b

a b—a

b—h

F(x)—]f(t)dt, T € [a—l—h ;

Then, we may have the following:

Theorem 3.2. Under the above assumptions and if the probability density
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function f belongs to Ly [a,b], then we have the inequality

a-n[rw - (o) sw] + 5 - 155N

2 2 b—a

1 , 1 a+b\> f ) —f(a)
_[ﬂ(gh—l)(b—a) —5(1—h)(5’5— 2 ) b—a

IN

Jun

2
— )2 L _ 2 i _ _ z a;b
(b—a) [2880 (4 15h + 15h ) + 51 (2—3h)(1—h) <

b—a
1 =\ e (0= r@yY
+Zh(1h)<ba>] [b—a f 2_( b—a )]

(b—a)Q(M—m) 1 5
4 — 15h + 15h
2 2880( o+ 19 )+

2 41 2
1 T — atb 1 T — atb
— (2 — 21— 2 Zhi(l— 2
+24( 5h+3h)<b_a> +4h( h)(b_a ,

(3.1) if m<f <M, almost everywhere on [a, b]

IN

=

for allx € [a+ h%5%, b—h'%54] and h € [0,1].
Proof. Put in (2.1), F instead of f to get (3.2) and the details are omitted.

Corollary 3.1. Under the above assumptions, we have

a-mer(x < 2E0) B2 BO0 B oy () - o)
s wd o[ L el (£ = F@N]?
< m(4—15h+15h) (b—a) [b—a f , ( P )]
1 2% _a2
< M(M—m)(4—15h+15h) (b—a),

(3.2) if m<f <M, almost everywhere on la,b].
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3.3 Application for generalized beta random variable

If X is a beta random variable with parameters 33 > —1, 5, > —1 and for

(B2 > 0 and any i, the generalized beta random variable
Y = ﬁl + /82X7

is said to have a generalized beta distribution [7] and the probability density

function of the generalized beta distribution of beta random variable is,

(z=p1)"3 (B1+B2—2)"
f(x) = B(Zs+i,64+1l)g;ﬁ23+§4+1>’ for By <& < i+ B

0, otherwise,

)

where (I, m) is the beta function with [, m > 0 and is defined as

1

B(l,m) = /a:l_l (1—x)" " da.

0

For p, ¢ > 0 and h € [0,1), we choose,

/61 = ga

ﬂ? = (1_h>7
ﬁfﬂ = P 17
By = q—1

Then, the probability density function associated with generalized beta ran-
dom variable )
Y = 5 +(1-h)X,

takes the form

0, otherwise.
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Now,

df (z;p,q) (z— g)p’Q (1—%— x)qﬂ
dx (1 _ h)p—l—q—l ﬁ <p7 q)

{(p—l)—(p—Q)——(erq—?)x :

and

, 2 1 )
flpa|, = O 2o [(p—1)"B(2p—3,2¢ - 1)
+(g—1)" 8 (2p— 1,2 - 3)

—2(p—=1)(¢g—1)B(2p — 2,29 — 2)].

Then, by Theorem we may state the following.

Proposition 3.1. Let X be a beta random variable with parameters (p,q) .
Then, for generalized beta random variable

h
Y=2+01-hX
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we have the inequality

=1 e <) (- 3) Fo) - L]

. [i(gh—l)—%(l—h) (+=3) ] (f(l)—f<0))‘

IN

i (4 — 15h + 15h°) +

(1—h)2B(p,q) {2880

1

i(z_ghm—h)(x—%) +ih(1—h)(x—%)] «
(p—1°B(2p—3,2¢—1)+ (¢ —1)*B(2p— 1,29 — 3)
—2(p-1)(q—-1)B3(2p—2,29-2)

(33)  —(1—hF(pa) (F(1) = FO)]7,

for all x € [%,1—%].
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