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Remarks on Voronovskaya’s theorem

Heiner Gonska and Ioan Raga

Abstract

The present note discusses various quantitative forms of Vor-
vonovskaya’s 1932 result dealing with the asymptotic behavior of the
classical Bernstein operators. In particular the relationship between
a result of Sikkema and van der Meer and an alternative approach

of the authors ist discussed.
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In a recent paper [4] the well-known theorem of Voronovskaya for the

classical Bernstein operators B,, was stated in the following form.

Theorem 1 For f € C?[0,1],z € [0,1] and n € N one has

Bt 000 o < 20 ([ ).
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Here @ is the least concave majorant of w, the first order modulus of

continuity, satisfying
w(f;e) <w(f;e) <2w(f;e),e>0.

The above inequality follows from a more general asymptotic statement
which was inspired by results of Bernstein [2] and Mamedov [6]. This is

given in

Theorem 2 Let g € Ny, f € C0,1] and L : C[0,1] — C[0, 1] be a positive

linear operator. Then

‘ ™) (4
D(f52) = 30 Hl(er —a)rsa) - )

r=0

. 1.

< L(ley — x]q,x)& (f(Q); L(le; — x| x) ) '
q! (¢ +1)L(lex — z[% @)

The following remarks are obvious:

Remark 1 Both asymptotic statements (supposing L = L,, n € N, in

Theorem 2) are in quantitative from due to the appearence of @.

Remark 2 In Theorem 1 the (absolute) moments L((e; — x)"; ) and
L(le; — x|"; ) are computed and/or manipulated in order to arrive at more
instructive quantities. Of course this is not possible in Theorem 2 unless

one makes additional assumptions on L.

Remark 3 In Theorem 1 the limit @f”(x) is explicitely given. The in-
equality of Theorem 2 requires extra considerations to arrive at a comparable

statement.
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Remark 4 Thinking of Theorem 2 as an asymptotic expansion (supposing
again that L = L, n € N), this expansion is "complete” in the sense that
q € Nq s arbitrary.

In contrast to that, the expansion of Theorem 1 is "non-complete”.

Remark 5 Both inequalities above do not give information about the asymp-

totic behaviour of quantities such as
nl(Buf)®(x) = fO(@)] for k>1.

That this is also a meaningful problem was shown in recent papers by Floater

[3] and Abel and Heilmann [1], Theorem 3.3, for example.

A very interesting complete asymptotic expansion (in quantitative form)

was already given some 30 years ago by Sikkema and van der Meer [8].

Theorem 3 Let W(C?0,1] denote the set of all functions on [0, 1] whose
q-th derivative is piecewise continuous, ¢ > 0. Moreover, let (L,) be a
sequence of positive linear operators L, : W(C10,1] — C[0,1] satisfying
L.(eo;x) = 1. Then for all f € fC10,1],q € Nog,z € [0,1], n € N and

6 >0 one has

L) — Sy = 30 I )| < 00) -l £90).

Here cnq(w,0) = 0% Ly (quu (erx) ;x),

1
pe=g if Ly((eq —2x)%2) >0,

1
o= —3 if Ly((eq —2x)%2) <0,
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1 /1 q q 1
saui) = o (G It 0t ) s ) = e = [

bg+1 1s the Bernoulli polynomial of degree g+1 and [t| = max{z € Z : z < t}.
Moreover, the functions c, 4(z,d) are best possible for each f € C[0,1],
re€[0,1,neNandd > 0.

In the sequel we will deal with the case ¢ = 2 only and furthermore

assume that L,(e;;z) = x. The above theorem then implies the inequality

given in
Corollary 1

La(fi) = (&) = 5 Lal(er — 2)52) - ()

cno(z;0) = 8- L, (52& (61 ; x) ;x)

< cpalz,0) - w(f",9),

where

sayw) = ge s {es(ful) — balful — ul)},
bs(x) = 2% - gx2 + %x

As an alternative inequality we propose the one given in

Theorem 4 Let L : C[0,1] — C0,1] be a positive linear operator satisfying
Le; = ¢;,i = 0,1. Then for any f € C*[0,1],x € [0,1] and § > 0 we have
1
L(fi2) = f(0) = 5 Lt~ 052) - 1)

<

wa{ (ex = %52, g5l = ol ) b (77:0)

N —

< max {L((el — x)2;x),3—15 - L(lep — x|3;x)} ~w(f")0).
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Proof Proceeding as in the considerations preceding Theorem 6.2 in [5] it
can be seen that for f € C?[0,1] fixed and g € C3[0, 1] arbitrary one gets

1

L(f;2) = f(z) = 5L((er = 2)% ) - ["(2)

< t((er =) {11 - 0l + 5 UL 2 S

< £((er — i) e {1 - TEZIEDA S = g+ G171}

Passing to the infimum over g € C?3[0, 1] then implies

L(fi2) =~ 1(0) = LG = os0)- (0

< max{ Ll(er — o) g5 Llles = o) b 6 (5. 700,21, 00.11)

1 2 1 3 ~ (el
- émaX{'L«el — 2)%0); o= L(Jer — ;:z:)} L B(f"50).

Here we used the fact that for f € C[0,1] and § > 0 one has

@(f;0).

N —

4] 4]
K (5 75€0.0,C10,11 ) mint {117 -all+5 110 € €011} -

See [7] for a proof of this. The second inequality of Theorem 4 is a conse-

quence of @(f;0) < 2-w(f;0). O

In order to compare the quality of our estimate with that of Sikkema and

van der Meer we consider the classical Bernstein operators as an example.

Example 1 For the Bernstein operators B,, there holds

o o (252)) 2o )
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Proof. First recall that

1

sp4(u) = U + é {bs([ul) = bs(lul = [lul)} -

We put t = |u| > 0 and claim that

[t] < 2[t].

bs(t) — bs(t — [t]) = 3t2[t] — 3t[t]* + [t]* — 3t[t] + g[tP + %

Clearly this is true of 0 <t < 1. So let t > 1.
We divide the two sides of the inequality by [t] > 1 and multiply by 2.

Then the above inequality is equivalent to
6% — 6t[t] + 2[t]* — 6t + 3[t] + 1 < 2t2,
or
487 — 6t + 1 < 6t[t] — 2[t]* — 3[].

Now choose k € N such that £ <t < k+ 1, then [t] = k, and the above
reads

A4t2 — 6t + 1 < 6kt — 2k* — 3k.

It remains to check if this is true for all ¢ € [k, k + 1).
For t = k we get
4k* — 6k + 1 < 6k* — 2k* — 3k,

which is equivalent to 1 < 3k (fulfilled).
For t = k£ + 1 we have to show that

4(k+1)* —6(k + 1) + 1 < 6k(k + 1) — 2k* — 3k,

being equivalent to —1 < k (fulfilled).



Remarks on Voronovskaya’s theorem

93

Hence the parabola 4t — 6t +1 lies below the straight line 6kt — 2k? — 3k

for t € [k, k + 1] which is what we claimed above.

This implies that

s < Sut o zful
< %u2+é|ul3
Hence
Cno(z,0) < 5% - B, (% . (61;72@2 % - lep — x|3;x>

Using the inequality (see [4])

1
3.
B,(le; — z| ,x)§3-\/ﬁ+

we obtain

i \/1+
) n?

M . Bn((el — :I;)Q;J;)

} |

n

(1 —x)
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Example 2. Choose 6 = % Then the theorem of Sikkema and van der

Meer implies

Ba(fs) — () -
: l_x{ \[\/ l_x}-w<f”;\/g>
frods i) 3 ()
§0.9-Mw<f”; E>'

This is better than the corresponding result of Videnskii [9] published in 1985

D)

and only for the Bernstein operators. In Videnskii’s book instead of 0.9 the

constant 1s one.

We now apply Theorem 4 and arrive at

Corollary 2

B.(fia) — () - f”(:lr)'

< Ll — ) - max {1,% i + 7]:(17; :1:)} - w(f" 6)

n2

f(l—I 1_1' ",
< — o max{ \/— 7}‘w(fa5)-

If the modulus w(f”;) is concave, then the first inequality is better than

what can be derived from Sikkema’s and van der Meer’s result because

1 /1 z(1-=x) 1\/1 z(1 — )
=4+ < S S
maX{l’é\/n2+ n } 1+6 n2+ n
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However, in the general case

(1 —x) 1 /1 z(1—-2x)
max -+ ——772>14= +—
5V n? n

and equality is attained if and only if

) = L+M

n2 n

1 [T z(1-2)
dn 75 = ]_7 — _ ,
2(z,0) max{ s\ 3 + — }

then a possible outcome of this discussion is the following

Theorem 5 For the Bernstein operators B,,n € N, f € C[0,1],z € [0,1]
and 6 > 0 there holds

(1l —x)

2n f”(x)

Bu(f;x) = f(x) -

z(l — )

<
- 2n

~min {é,2(z,0) - w(f”,0);dna(z,0) - @(f",0)}.

All previous quantitative Voronovskaya theorems for the Bernstein op-

erators and f € C?[0, 1] can be derived from Theorem 5. O
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