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On a sequence of linear and positive

operators

Florin Sofonea

Abstract

In order to approximate function f : [0,∞) → R, with |f(x)| ≤

Mxα for x > 0 and M = M(f) > 0, we introduce the approximation

operators Fn : f → Fnf , with

(Fnf)(x) =
(nx)n+1

n!

∫ 1

0
tnx−1(1− t)nf

(
t

1− t

)
dt, x > 0, α > 0,

where n ≥ n0 with n0 = [α] + b + 1 and n ∈ N
∗ is fixed.

Our aim is to find some properties for above operator.
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Let Yα be the linear space of all functions f : [0,∞) → R, with

the property that there exist M , M = M(f) > 0 and α > 0 such that

|f(x)| ≤Mxα, for all x > 0. We define the operators Fn : f → Fnf ,

(1) (Fnf)(x) =
(nx)n+1

n!

∫ 1

0

tnx−1(1− t)nf

(
t

1− t

)
dt, x > 0, α > 0

where n ≥ n0, n0 = [α] + b + 1 and n ∈ N∗ is fixed.

Now, we demonstrate that if f ∈ Yα, then Fnf ∈ Yα.
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Theorem 1 If (Fn)n≥n0 are the operators defined in relation (1) and

f ∈ Yα, |f(x)| ≤M(f)xα, α > 0, x > 0 then, there exist M(Fnf) > 0 such

that for all x > c > 0 the following relation hold

|(Fnf)(x)| ≤M(Fnf)xα,

where M(Fnf) = M(f)e
2α2

b
√

c .

Proof. We have successive

|(Fnf)(x)| ≤ (nx)n+1

n!

∫ 1

0

tnx−1(1− t)n

∣∣∣∣f ( t

1− t

)∣∣∣∣ dt

≤ M
(nx)n+1

n!

∫ 1

0

tnx−1(1− t)n

(
t

1− t

)α

dt

= M
(nx)n+1

n!

∫ 1

0

tnx+α−1(1− t)n−α+1−1dt

= M
Γ(nx + n + 1)

n!Γ(nx)

Γ(nx + α)Γ(n− α + 1)

Γ(n + nx + 1)
.

Therefore, we obtain

(2) |(Fnf)(x)| ≤M
Γ(n− α + 1)Γ(nx + α)

Γ(n + 1)Γ(nx)
.

To obtain our results we need the following theorem

Theorem 2 (Bohr & Mollerup) There is only one function g : (0,∞) →

(0,∞) which verifies:

1. g(1) = 1

2. g(x + 1) = xg(x)

3. ln g is a convex function on (0,∞),
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then g(x) = Γ(x), for all x > 0.

From Theorem 2 we have

(3) [x1, x2, x3; ln Γ] ≥ 0, for all 0 < x1 < x2 < x3 <∞

namely,

(4) (Γ(x2))
x3−x1 ≥ (Γ(x1))

x3−x2(Γ(x3))
x2−x1.

We choose 0 < x1 = z + 1 − α < x2 = z + 1 < x3 = z + 2 < ∞. From

relation (4) we obtain

(Γ(z + 1))1+α ≥ (Γ(z + 1− α))((z + 1)Γ(z + 1))α,

therefore

(5)
Γ(z + 1)

Γ(z + 1− α)
≤ (z + 1)α, for all z + 1 > α > 0.

If we choose 0 < x1 = z−α < x2 = z +1−α < x3 = z +1−α < z +1 <∞,

then the following relation holds

(Γ(z + 1− α))1+α ≥
(

Γ(z + 1− α)

z − α

)α

Γ(z + 1),

namely

(6)
Γ(z + 1− α)

Γ(z + 1)
≤ 1

(z − α)α
, for all z > α > 0.

From (5) and (6) we obtain

(7)
1

(z + 1)α
≤ Γ(z + 1− α)

Γ(z + 1)
≤ 1

(z − α)α
, for all z > α > 0.
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In relation (4) we choose 0 < x1 = nx < x2 = nx+α < x3 = nx+α+1 <∞

and we obtain(
Γ(nx + α + 1)

(nx + α)

)α+1

≤ (Γ(nx))(Γ(nx + α + 1))α,

namely

Γ(nx + α + 1)

Γ(nx)
≤ (nx + α)α+1, for all x > 0, α > 0,

(nx + α)Γ(nx + α)

Γ(nx)
≤ (nx + α)α+1.

From above relation we have

(8)
Γ(nx + α)

Γ(nx)
≤ (nx + α)α, for all x > 0, α > 0.

In relation (4) we choose 0 < x1 = nx−1 < x2 = nx < x3 = nx+α <∞and

we obtain

Γ(nx)α+1 ≤
(

Γ(nx)

nx− 1

)α

Γ(nx + α),

namely

(9) 0 < (nx− 1)α ≤ Γ(nx + α)

Γ(nx)
, nx− 1 > 0, α > 0.

From (8) and (9) we have

(10) (nx− 1)α ≤ Γ(nx + α)

Γ(nx)
≤ (nx + α)α, for all x >

1

x
, x > 0, α > 0.

If in relation (2) we use the inequalities (7)and (10), we obtain

|(Fnf)(x)| ≤ M(f)
(nx + α)α

(n− α)α
= M(f)xα (nx + α

x
)α

(n− α)α

= M(f)xα

(
1 +

α + α
x

n− α

)α

= M(f)xα

(
1 +

α + α
x

n− α

) n−α
α+ α

x

α+ α
x

n−α
α

,
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namely

(11) |(Fnf)(x)| < M(f)xαe
α2(1+ 1

x)
n−α < M(f)xαe

2α2√
x(n−α) .

Let b ∈ N∗ be a fixed number and we denote n0 = [α+ b+1] = [α]+ b+1 >

α + b. We consider n ≥ n0 and we have n− α > b, namely
1

n− α
<

1

b
.

From (11) we obtain

|(Fnf)(x)| ≤M(f)xαe
2α2√

xb ≤M(f)xαe
2α2

b
√

c =: M(Fnf)xα,

where M(Fnf) = M(f)xαe
2α2

b
√

c .

Next to calculate (Fnej)(x), where ej(x) = xj . We have

(Fnej)(x) =
(nx)n+1

n!

∫ 1

0

tnx+j−1(1−t)n−jdt =
Γ(nx + n + 1)

Γ(nx)n!
B(nx+j, n−j+1)

=
Γ(nx + n + 1)

Γ(nx)n!

Γ(nx + j)Γ(n− j + 1)

Γ(nx + n + 1)
=

(nx)jΓ(n− j + 1)

Γ(n + 1)
=

(nx)j

(n− j + 1)j
.

Therefore, we have (Fne0)(x) = 1, (Fne1)(x) = x, respectively

(Fne2)(x) =
(nx)(nx + 1)

(n− 2 + 1)2

=
nx(nx + 1)

n(n− 1)
= x2 +

x(1 + x)

n− 1

n→∞−→ x2.

We need the following theorem:

Theorem 3 (A. Lupaş [4]) If lim
n→∞

(Lej)(x) = [ϕ(x)]j, j = 0, 1, 2, then

lim
n→∞

(Lf)(x) = f(ϕ(x)),

for f a continuous function on the interval [0, M ], M > 0.

Using the above theorem, we obtain the following result:
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Theorem 4 Let f : [0,∞)→ R be a function which verifies |f(x)| ≤Mxα,

α > 0, M > 0, for x → ∞. If Fn are the linear and positive operators

defined in relation (1), then

lim
n→∞

(Ff)(x) = f(x),

for f a continuous function on the interval [0, M ], M > 0.

In [6], A. Lupaş has demonstrated the following result:

Theorem 5 If L : C(K)→ C(K1), K1 = [a1, b1] ⊆ K is a linear operator,

then for all function f ∈ C(K) and δ > 0, the following relation is verified

||f−Lf ||K1 ≤ ||f ||·||e0−Le0||K1 + inf
m=1,2,...

{||Le0||K1 +δ−m||LΩm||K1}ω(f ; δ),

where || · || = max
K
| · | and Ωm(t) = (t− x)m.

Using the above theorem, we obtain the following result.

Theorem 6 Let Fnf be the operators defined in (1). Then for all

f ∈ Yα ∩ C[0,∞), α ≥ 2 we have

||f − Fnf || ≤
5

4
ω

(
f ;

1√
n− 1

)
.

Proof. We consider the case m = 2, Ω2(t) = (t− x)2.

From (1) we have (see [7]):

(FnΩ2)(x) = x2 +
x(1− x)

n− 1
− 2x2 + x2 =

x(1− x)

n− 1
.

If we choose δ =
1√

n− 1
and use the inequality x(1− x) ≤ 1

4
, we obtain

||f − Fnf || ≤
5

4
ω

(
f ;

1√
n− 1

)
.



On a sequence of linear and positive operators 161

Let YB = {f : [0,∞)→ R; |f(x)| ≤ A(f)eBx, x ≥ 0} be a linear space,

where B > 0. We consider Favard - Sasz linear and positive operators,

defined so Sn : f → Snf ,

(12) (Snf)(x) = e−nx

∞∑
k=0

(nx)k

k!
f

(
k

n

)
(n = 1, 2, . . . , ), where Snf ∈ YB.

It is know that

Γ(α) =

∫ ∞

0

e−ttα−1dt,

and using the change of variable t = ay, we have

1

aα
Γ(α) =

∫ ∞

0

e−ayyα−1dy.

For the Favard - Sasz operator we have∫ ∞

0

e−ayyα−1(Snf)(y)dy =

∫ ∞

0

e−(a+n)y
∞∑

k=0

nk

k!
yk+α−1f

(
k

n

)
dy

=
∞∑

k=0

nk

k!
f

(
k

n

)∫ ∞

0

e−(a+n)yyk+α−1dy

=
∞∑

k=0

nk

k!

1

(a + n)k+α
Γ(k + α)f

(
k

n

)

=
1

(a + n)α

∞∑
k=0

(α)kΓ(α)

k!

(
n

(a + n)

)k

f

(
k

n

)
.

If we consider the case α = nx;
n

(a + n)
=

1

2
and use the notation (z)k =

Γ(z + k)

Γ(z)
we obtain the Lupaş linear and positive operators (see [5])

(13) (Lnf)(x) = (2)−nx
∞∑

k=0

(nx)k

2kk!
f

(
k

n

)
, x ≥ 0

where f : [0,∞)→ R.
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We consider the positive operator

(14) (Gnf)(x) =
nnx

Γ(nx)

∫ ∞

0

e−nttnx−1f(t)dt, x > 0.

If we use the change of variable t =
T

n
, dt =

1

n
dT , we obtain

(Gnf)(x) =
nnx

Γ(nx)

1

n

∫ ∞

0

e−T T nx−1

nnx−1
f

(
T

n

)
dT,

namely, we have the Post-Widder operator

(15) (Wnf)(x) =
1

Γ(nx)

∫ ∞

0

e−ttnx−1f

(
t

n

)
dt.

Theorem 7 The operators Fnf defined in (1)verify the following relation

Fnf = WnGnf,

where Wn are Post Widder operators, respectively Gnf are Gamma opera-

tors.

Proof. We use the following representation of Gamma operators

(Gnf)(x) =
1

n!

∫ ∞

0

e−ttnf
(nx

t

)
dt,

and for x =
t

n
we have

(Gnf)

(
t

n

)
=

1

n!

∫ ∞

0

e−ssnf

(
t

s

)
ds.

We obtain

(WnGnf)(x) =
1

n!Γ(nx)

∫ ∞

0

e−ttnx−1

(∫ ∞

0

e−ssnf

(
t

s

)
ds

)
dt

=
1

n!Γ(nx)

∫ ∞

0

e−ssn

(∫ ∞

0

e−ttnx−1f

(
t

s

)
dt

)
ds.
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If we use the change of variable
t

s
= y, namely t = ys we have

(WnGnf)(x) =
1

n!Γ(nx)

∫ ∞

0

e−ssn+nx

(∫ ∞

0

e−ysynx−1f(y)dy

)
ds

=
1

n!Γ(nx)

∫ ∞

0

(∫ ∞

0

e−s(1+y)sn+nxds

)
ynx−1f(y)dy.

Denote s(1 + y) = T , ds =
1

1 + y
dT and we obtain

(WnGnf)(x) =
1

n!Γ(nx)

∫ ∞

0

1

(1 + y)n+nx+1

(∫ ∞

0

e−T T n+nxdT

)
ynx−1f(y)dy,

Since

Γ(n + nx + 1) =

∫ ∞

0

e−T T n+nxdT,

we have

(WnGnf)(x) =
Γ(n + nx + 1)

n!Γ(nx)

∫ ∞

0

ynx−1

(1 + y)n+nx+1
f(y)dy

=
(nx)n+1

n!

∫ ∞

0

ynx−1

(1 + y)n+nx+1
f(y)dy.

If we use the change of variable
y

1 + y
= t, dy =

1

(1− t)2
dt, we obtain

(WnGnf)(x) =
(nx)n+1

n!

∫ 1

0

(
t

1− t

)nx−1
(1− t)n+nx+1

(1− t)2
f

(
t

1− t

)
dt

=
(nx)n+1

n!

∫ 1

0

tnx−1(1− t)nf

(
t

1− t

)
dt = (Fnf)(x).
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A lower bound for the second moment of

Schoenberg operator

Gancho T. Tachev

Abstract

In this paper we represent a new lower bound for the second mo-

ment for Schoenberg variation-diminishing spline operator. We apply

this estimate for f ∈ C2[0, 1] and generalize the results obtained ear-

lier by Gonska, Pitul and Rasa.

2000 Mathematics Subject Classification: 41A10, 41A15, 41A17,

41A25, 41A36

1 Main result

We start with the definition of variation-diminishing operator, introduced

by I.Schoenberg. For the case of equidistant knots we denote it by Sn,k.

Consider the knot sequence Δn = {xi}n+k
−k , n ≥ 1, k ≥ 1 with equidistant

”interior knots”, namely

Δn : x−k = · · · = x0 = 0 < x1 < x2 < · · · < xn = · · · = xn+k = 1
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