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On a sequence of linear and positive
operators

Florin Sofonea

Abstract

In order to approximate function f : [0,00) — R, with |f(x)| <
Mz® for x > 0 and M = M(f) > 0, we introduce the approximation
operators F,, : f — F,f, with

(fnf)(:c):%/ltmlu—t)"f <L> dt, >0, a>0,

where n > ng with ng =[] + b+ 1 and n € N* is fixed.

Our aim is to find some properties for above operator.
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Let Y, be the linear space of all functions f : [0,00) — R, with
the property that there exist M, M = M(f) > 0 and o > 0 such that
|f(x)| < Mx*, for all z > 0. We define the operators F,, : f — F,f,

W )= [y

n! 0

1—-1
where n > ng, no = [a] + b+ 1 and n € N* is fixed.

)dt, x>0, a>0

Now, we demonstrate that if f € Y, then F,,f € Y,,.
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Theorem 1 If (F,)n>n, are the operators defined in relation (1) and
fevy, |flx)] < M(f)z*, a >0, x >0 then, there exist M(F,f) > 0 such
that for all x > ¢ > 0 the following relation hold

[(Fuf) (@) < M(F f)a®,

202

where M(F,f) = M(f)ev=.

Proof. We have successive

n!

1 «a
n! 0 1—t

1
_ M(nx)n—l—l / tnerafl(l . t)nfonrlfldt

(Ff)@)| < O [ ey

IN

n! 0
B Fne+n+1)T'(ne+a)l'(n—a+1)
B n!T'(nx) I'(n+nx+1) '

Therefore, we obtain

I'(n—a+ 1)I'(nx + oz)‘

(2) (Fnf)@)l = M——Fr =0

To obtain our results we need the following theorem

Theorem 2 (Bohr & Mollerup) There is only one function g : (0,00) —

(0, 00) which verifies:
1. g(1)=1
2. g(z+1) = zg(x)

3. Ing is a convex function on (0, 00),



On a sequence of linear and positive operators 157

then g(x) = I'(x), for all x > 0.

From Theorem 2 we have

(3) (21,29, 23;InT] >0, for all 0 < 21 < 29 < 23 < 00
namely,
(4) (D))" = ()" 72 (U (ws)) 27"

Wechoose 0 <z =z2+1—a<za=z+1<x3=2+2<o00. From

relation (4) we obtain
C+1)H* > T(z+1-a)((z+ 1) (z + 1)),

therefore

I'(z+1)

— < 1)%, for all 1 .
F(z+1—oz)_(z+ )%, forallz+1>a>0

(5)

Ifwechoose0 <z =z—a<ry=z4+1l—-a<zr3=z4+1l—-a<z+1 < o0,

then the following relation holds

[(z+1-a)\°
-z (R re ),
Zz—
namely
T(z4+1— 1
(6) (zHl-a) , forall 2 >a > 0.
L(z+1) (z —a)

From (5) and (6) we obtain

1 <F(z+1—a)< 1
(z+1D)> = T(z+1) ~ (z—a)°

, forall z>a>0.

(7)
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In relation (4) we choose 0 < 21 = nx < x93 = nr+a < 3 =nr+a+1 < oo

and we obtain

T(nz+a+1)\"" N
(Pt D) < () e k)

namely

I(nx +a+1)

T(nr) < (nz+a)*™, forallz >0, a>0,

(nx 4+ a)l'(nx + «)
['(nx)

< (nz + a)*™.

From above relation we have

C(nx + «)

(®) ['(nx)

< (nx 4+ @), forallz >0, a>0.

In relation (4) we choose 0 < 1 = nz—1 < 29 = nx < x3 = nr+a < ooand

we obtain
1—1 (63
[(nz)*t! < (%) I'(nz + «),
namely
r
9) 0<(nx—1)°‘§w,nx—l>0,a>0.

['(nx)
From (8) and (9) we have

I(nz + «a)

(10) (nx—1)* < T ()

1
<(nx+ ), forallz>— >0, a>0.
x

If in relation (2) we use the inequalities (7)and (10), we obtain

FEN@ < )T e

(n —a)

o (no +5)°
(n—a)~

nfao‘"'%
&+Q «@ C(‘i‘g @niaa
= e (14552 ) e (14222 .

n—uo n—uo
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namely

o 1+ = 2

(11) (Fuf)(@)] < M(f)a®e s < M(f)a%evit.

Bl

Let b € N* be a fixed number and we denote ng = [a+b+1] = [a]+b+1 >
1

< —-.

n—oa b

a + b. We consider n > ny and we have n — a > b, namely
From (11) we obtain
202 202
[(Fuf)(@)] < M(f)aevr < M(f)a"erve = M(F, f)a®,
where M (F,f) = M(f)xaez%ﬁ.

Next to calculate (F,e;)(x), where e;(x) = 27. We have

1 , . T 1
(Fne‘j)(l‘) — (nx)n‘i’l / tn$+J_1(1_t)n_]dt — MB(nx—i—]’ n—j+1)

n! 0 [(nx)n!
Tr+n+ DT+ )Tn—j5+1)  (na);I'(n—j+1) (nx);
['(nx)n! I'(nz+n+1) B I'(n+1) S (n—j+1);

Therefore, we have (Fpep)(x) =1, (Fpe1)(x) = x, respectively

~(nx)nz+1)  nxne+1) 5 x(l+z) n—cs 2
(}-n€2)(95)—(n_2+1)2— n(n—1) =z —1—771_1 .

We need the following theorem:

Theorem 3 (A. Lupas [4]) If lim (Le;)(z) = [p(x)), j = 0,1,2, then

lim (L£f)(z) = f(p(z)),

n—~oo

for f a continuous function on the interval [0, M], M > 0.

Using the above theorem, we obtain the following result:
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Theorem 4 Let f : [0,00) — R be a function which verifies |f(x)| < Mx®,
a >0, M >0, forx — oo. If F, are the linear and positive operators

defined in relation (1), then

lim (Ff)(2) = ()
for f a continuous function on the interval [0, M], M > 0.

In [6], A. Lupag has demonstrated the following result:

Theorem 5 If L: C(K) — C(Ky), K1 = [a1,b1] C K is a linear operator,
then for all function f € C(K) and § > 0, the following relation is verified

goos

where || - || = mI?X] | and Q,,(t) = (t —x)™.
Using the above theorem, we obtain the following result.

Theorem 6 Let F,f be the operators defined in (1). Then for all
feyY,nCl0,00), a > 2 we have

I - Fufll < 2 (5= ).

Proof. We consider the case m = 2, Qy(t) = (t — z)>.
From (1) we have (see [7]):

(Faflo)(7) = 2 +

and use the inequality (1 — z) < —, we obtain

If we choose § =

] =

1
vn—1

5 1
||f—fnf|‘§1w (f;\/ﬁ)’
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Let Yg = {f:[0,00) = R; |f(z)] < A(f)eP*, x > 0} be a linear space,
where B > 0. We consider Favard - Sasz linear and positive operators,

defined so S, : f — S, f,

nzx)k
(12) (Spf)(x) =™ ( k!) f (E) (n=1,2,...,), where S, f € Y.

It is know that
I'a) = / et dt,
0

and using the change of variable ¢ = ay, we have

1 o0
—TI(a) = / e~ Wy tdy.
0

For the Favard - Sasz operator we have

0 o 0 k
—ay, a—1 _ —(a+n)y n_ k+a—1 E
[ emrtsnma = [T e F(%)

= nk k
_ w v —(a+n)y, k+a—1
= 2t () [

n 1
= — and use the notation (z); =

If we consider the case a = nx; ——
(a+n) 2

L(z+k)

e we obtain the Lupag linear and positive operators (see [5])
z

(nx) k
2kl<;!kf (ﬁ) @20

(13) (Lof)(@)=(2) )

k=0

where f:[0,00) — R.
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We consider the positive operator

,n/’flﬁ?

['(nx)

(14) (Gnf)(z) = /000 e " f(t)dt, x> 0.

T
n Y

1
If we use the change of variable ¢ = dt = —dT, we obtain
n

nr q o] Tnac—l T
(Cot o) = g [T e () ar,

namely, we have the Post-Widder operator

(15) Wl )a) = s [ e (g) i,

Theorem 7 The operators F, f defined in (1)verify the following relation

where W,, are Post Widder operators, respectively G, f are Gamma opera-

tors.

Proof. We use the following representation of Gamma operators

Gufle) = [ (B ar

nl

t
and for x = — we have

n
t 1 o[> . [t
(Gnf) (g) :a/o e ’s f(g)ds
We obtain

WGuf)w) = o [Tt ([Tees (
1
(
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t
If we use the change of variable — = y, namely ¢t = ys we have
s

1 > —S _NnNTne > —Yys, nr—
(NGu)) = s [T (/ vy lf(y)dy)ds
_ n‘r(nm)/o (/O e—s(l-l—y)sn—i-nxds) y””_lf(y)dy.

1
Denote s(1+y) =T, ds = ?dT and we obtain
)

1 * 1 o
(Wnan)(x> = nlr(nx) /0 (1 + y)n+m+1 (/0 e_TTn—Hde) ymc_lf(y>dya

Since

I(n+ne+1)= / e~ TrminedT,
0

we have
Fn+nz+1) [~ yre—t
W,G, = -~ T va—— d
WG ) =~ [ e )y
(n2)nt1 /oo y!
dy.
n! 0 (]_ + y)nJrnerlf(y) Y
. 1 .
If we use the change of variable =t, dy = ———dt, we obtain
+vy (1—1)2

(WaGnf)(x) = (m;);nﬂ /01(1;)%1 - (_1?”;)?“]6(1;) u

-y FEr— (ﬁ) dt = (Fuf) ().
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A lower bound for the second moment of
Schoenberg operator

Gancho T. Tachev

Abstract

In this paper we represent a new lower bound for the second mo-
ment for Schoenberg variation-diminishing spline operator. We apply
this estimate for f € C?[0, 1] and generalize the results obtained ear-

lier by Gonska, Pitul and Rasa.

2000 Mathematics Subject Classification: 41A10, 41A15, 41A17,
41A25, 41A36

1 Main result

We start with the definition of variation-diminishing operator, introduced
by I.Schoenberg. For the case of equidistant knots we denote it by S, .
Consider the knot sequence A, = {xz}ﬁgk, n > 1, k > 1 with equidistant

"interior knots”, namely
Ap:rxp==20=0<01 <2< - <xp="+=Tpyp =1
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