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On Principal Ideals of Triply-Generated
Telescopic Semigroups1
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Abstract

In this paper, we investigate principal ideals of triply-generated

telescopic numerical semigroups of the form S =< a, a + 2, 2a + 1 >,

where a > 2 is even integer. We examine relations between these

ideals and the Apery sets of S.
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0 Introduction

Let N and Z denote the set of integers and non-negative integers,respecti-

vely. A numerical semigroup S is a subset of N that is closed under addition,

contains 0, and generates Z as a group.

This paper consists of three sections. In Section 1, we establish basic

definitions, notations and assumptions related to numerical semigroups that

will be needed for our investigation. In Section 2, we examine sums, unions,

and intersections of certain principal ideals of S. In Section 3, we investigate
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relations between Apery sets and these principal ideals of S.

1 Background, Notations and Assumptions

We begin by establishing the definitions and notations associated with

numerical semigroups necessary for this investigation. For more background

on the topic of numerical semigroups, the reader is encouraged to see Barucci

et al.(1997) and Froberg et al.(1987).

Definition 1.1. Let N denote the non-negative integers. A numerical semi-

group S is a subset of N such that

(1) 0 ∈ S,

(2) S is closed under addition,

(3) N\S is finite.

Notation 1.2. The following notations will be used throughout this paper:

Z = the set of integers;

S = a numerical semigroup as S =< a, a + 2, 2a + 1 >, where a > 2 is an

even integer;

g(S) = max(N\S) the Frobenius number of S.

Definition 1.3. We say that a numerical semigroup S is symmetric pro-

vided (g(S) − z) ∈ S for all integers z /∈ S ( see also Froberg et al.(1987)).

Definition 1.4. We say {s1, s2, ...sn} ⊂ S is a generating set of S provided

S = {k1s1 + k2s2 + ... + knsn : k1, k2, ..., kn ∈ N}.

We say that a generating set {s1, s2, ...sn} is the minimal generating set

of S if no proper subset is a generating set of S. When we write S =<

s1, s2, s3 > we mean that {s1, s2, ...sn} is the minimal generating set for S

and 0 < s1 < s2 < ... < sn ( See Madero and Herzinger ( 2005 )).
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Definition 1.5. A numerical semigroup S =< s1, s2, s3 > is called a triply-

generated telescopic semigroup if s3 ∈< s1/d, s2/d >, where d = gcd(s1, s2).

( See Matthews 2001 ). It known that if a is even and a > 2 then S =<

a, a + 2, 2a + 1 > is triply-generated telescopic and symmetric numerical

semigroup and g(S) = a2/2 + a − 1 ( See Ilhan 2006 ).

Example 1.6. Let S =< 6, 8, 13 >= {6k1 + 8k2 + 13k3 : k1, k2, k3 ∈ N}.

Then

S = {0, 6, 8, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24,→}

where ” → ” indicates that all integers greater then 24 are in S. Thus, S

is triply-generated telescopic numerical semigroup since d = gcd(6, 8) = 2

and 13 ∈< 6/2, 8/2 >. We see that g(S) = 23, and S is symmetric since

23 − z ∈ S for all integers z /∈ S.

Definition 1.7. A subset I of S is an ideal of S if I + S = {i + s : i ∈

I, s ∈ S} ⊆ I. An ideal I is generated by A ⊆ S if I = A + S. Finally, we

say I is principal if it can be generated by a single element. That is there

exists x0 ∈ S such that I = x0 + S = {x0 + s : s ∈ S}; in this case, we

usually write I = [x0] instead of I = x0 + S ( See Rosales et al. ( 2004 )).

Example 1.8 Let S =< 6, 8, 13 > as in ( 1.6). Then, we find that the

principal ideals I = [6] and J = [8] of S respectively, I = [6] = 6 + S =

{6, 12, 14, 18, 19, 20, 22, 24,→} and J = [8] = 8+S = {8, 14, 16, 20, 21, 22, 24,

26, 27, 28, 29, 30, 32,→}.

2 Sum, Union and Intersection of Principal
Ideals of S

Definition 2.1. Let be I and J are ideals of S. Then,we define their ideals

sum by I + J = {i + j : i ∈ I, j ∈ J} (See Barucci et al.(1997), and Madero

and Herzinger (2005)).
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Note 2.2. For the principal ideals I and J of S, we write that I + J ⊆ I

and I + J ⊆ J .

Note 2.3. Let be S a numerical semigroup such that S =< a, a+2, 2a+1 >,

where a > 2 is an even integer. Recall from above that S is telescopic and

symmetric. Moreover, we will let I = [a] and J = [a + 2]. We note that

I + J = [2a + 2].

Lemma 2.4. (2a + 1) /∈ I and 2a + 1 /∈ J .

Proof. If 2a + 1 6∈ I, then there exists s ∈ S such that a + s = 2a + 1.

It follows that a + 1 = s ∈ S, a contradiction. By a similar argument, if

2a + 1 6∈ J , we conclude that a − 1 ∈ S, also a contradiction.

Example 2.5. Let S =< 4, 6, 9 >= {0, 4, 6, 8, 9, 10, 12, 13,→}. Then,

we find that the Frobenius number of S as g(S) = 11 and the princi-

pal ideals I = [4] and J = [6] of S, respectively. I = [4] = 4 + S =

{4, 8, 10, 12, 13, 14, 16, 17,→} and J = [6] = 6+S = {6, 10, 12, 14, 15, 16, 18,

19,→}. In this case, we write 9 /∈ I and 9 /∈ J . Therefore, we obtain that

I + J = [4 + 6] = [10] = 10 + S = {10, 14, 16, 18, 19, 20, 22, 23,→} ⊆ I, J .

Theorem 2.6. (I ∪ J) = S\{0, 2a + 1}.

Proof. If x ∈ (I ∪ J) then x ∈ S but x 6= 0 by the definitions of I and J .

Further, x 6= 2a + 1 by lemma 2.4. We conclude (I ∪ J) ⊆ S\{0, 2a + 1}.

To prove the reverse containment, assume y ∈ S. Then we can write

y = k1a + k2(a + 2) + k3(2a + 1) where k1, k2, k3 ≥ 0. Note that if k1 > 0,

then y ∈ I and if k2 > 0, then y ∈ J . Therefore, if we assume that

y ∈ (S\(I ∪ J)), then y = k3(2a + 1) where k3 ≥ 0. If k3 ≥ 2, then

y = 2(2a + 1) + (k3 − 2)(2a + 1) = 3a + (a + 2) + (k3 − 2)(2a + 1) which is

an element of I ( and J ), a contradiction. Thus we must have k3 = 0 or

k3 = 1. Stated differently, we have y = 0 or y = 2a + 1. Thus completes

the proof.
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The following lemma is clear from the definitions of the ideal sum and

intersection. We offer this statement as a reference for the upcoming proofs.

Lemma 2.7. (I + J) ⊆ (I ∩ J).

Theorem 2.8. The family {I +J = [2a+2], {g(S)+2a+2}, {l.c.m.(a, a+

2)}} is a partition of I ∩ J where l.c.m. denotes least common multiple.

Proof. First note that g(S) + 2a + 2 /∈ [2a + 2] since g(S) /∈ S. Next

note that l.c.m.(a, a + 2) /∈ [2a + 2]. To see this, observe l.c.m.(a, a + 2) =

a2/2+a = g(S)+1 and g(S)+1−(2a+2) = g(S)−(2a+1) which is not an

element of S. Thus, l.c.m.(a, a + 2) cannot be generated by 2a + 2. Finally

note that g(S) + 2a + 2 6= l.c.m.(a, a + 2) since g(S) + 1 = l.c.m.(a, a + 2).

This establishes that the three sets are pairwise disjoint.

Now, we need to prove that I∩J = [2a+2]∪{g(S)+2a+2}∪{l.c.m.(a, a+

2)}. First we assume that x ∈ [2a+2]∪{g(S)+2a+2}∪{l.c.m.(a, a+2)}.

If x ∈ [2a + 2]thenx ∈ I ∩ J by lemma 2.7. If x = l.c.m.(a, a + 2), then

x = k1a = k2(a + 2) where k1 and k2 are non-negative integers. Thus

x ∈ I ∩ J . Finally, if x = g(S) + 2a + 2, then

(i) x = a + (a + g(S) + 2) ∈ I since a + g(S) + 2 ∈ S

(ii) x = (a + 2) + (a + g(S)) ∈ J since a + g(S) ∈ S. We conclude

x ∈ I ∩ J .

For the reverse containment, assume that y ∈ I ∩ J but y /∈ [2a + 2] =

I+J . We will show that either y = g(S)+2a+2 or y = l.c.m.(a, a+2). Since

y /∈ [2a+2] , we known that y−(2a+2) /∈ S. Since S is symmetric, we known

that g(S)−(y−(2a+2)) ∈ S. Note that g(S)+1 = a2/2+a = l.c.m.(a, a+2).

Thus, since g.c.d.(a, a+2) = 2, the statement g(S)− (y− (2a+2)) ∈ S can

be rewritten as l.c.m.(a, a + 2) + 2a + 1 − y ∈ S.

Now, suppose l.c.m.(a, a + 2) + 2a + 1− y ∈ I. Since y ∈ J , we see that

l.c.m.(a, a + 2) + 2a + 1 ∈ I + J = [2a + 2]. Therefore, l.c.m.(a, a + 2) +

2a + 1 − (2a + 2) ∈ S which says l.c.m.(a, a + 2) − 1 = g(S) ∈ S. This is

contradiction. We conclude that l.c.m.(a, a + 2) + 2a + 1 − y /∈ I. By a

similar argument we can show that l.c.m.(a, a + 2) + 2a + 1 − y /∈ J .
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We have shown that l.c.m.(a, a + 2) + 2a + 1 − y ∈ S\(I ∪ J). By

Theorem 2.6, we know that either l.c.m.(a, a + 2) + 2a + 1 − y = 0 or

l.c.m.(a, a + 2) + 2a + 1 − y = 2a + 1. In the former case, we have y =

g(S) + 2a + 2 and in the latter case, we have y = l.c.m.(a, a + 2). This

completes the proof.

Example 2.9. Let S =< 4, 6, 9 > as in ( 2.5.). Then, we write that union

and intersection the principal ideals I = [4] and J = [6] of S such that

I ∪ J = {4, 6, 8, 10, 12, 13, 14,→} = S\{0, 9}, and

I ∩ J = {10, 12, 14, 16, 18, 19, 20, 21,→ ...}

= {10, 14, 16, 18, 19, 20, 22,→ ...} ∪ {12} ∪ {21}

= [10] ∪ {l.c.m{4, 6}} ∪ {11 + 4 + 6}.

3 Relations Between Apery sets and Princi-
pal Ideals of S

Definition 3.1. Let n ∈ S\{0}, we define the Apery set of the element n as

the set Ap(S, n) = {s ∈ S : s−n /∈ S}. It can easily be proved that Ap(S, n)

consists of the smallest elements of S belonging to the different congruence

classes modn. Thus, ♯(Ap(S, n)) = n and g(S) = max(Ap(S, n))−n, where

♯(A) denotes Cardinality A. (See Rosales (2000), and Madero and Herzinger

(2005)).

Note 3.2. In this section, we investigate relations between the Apery sets

and the principal ideals of S that we investigated in Section 2. The following

lemma is clear from the definitions.

Lemma 3.3. If I = [a] and Ap(S, a) = {s ∈ S : s − a /∈ S} then I ∩

Ap(S, a) = ∅. Similarly, if J = [a + 2], then J ∩ Ap(S, a + 2) = ∅.

Theorem 3.4. {[a], Ap(S, a)} and {[a+2], Ap(S, a+2)} are both partitions

of S.
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Proof. We will prove the result only for {[a], Ap(S, a)}. The proof for

{[a + 2], Ap(S, a + 2)} is similar. According to Lemma 3.3, it is sufficient to

show that S = [a] ∪ Ap(S, a). Now it is clear that [a] ∪ Ap(S, a) ⊆ S.

For the reverse containment assume x ∈ S and x /∈ [a]. Then x− a /∈ S

hence x ∈ Ap(S, a).

Lemma 3.5. 2a + 2 /∈ Ap(S, a) and 2a + 2 /∈ Ap(S, a + 2).

Proof. The result follows from the fact that 2a + 2 − a = a + 2 ∈ S and

2a + 2 − (a + 2) = a ∈ S.

Example 3.6. Let

S =< 8, 10, 17 >= {0, 8, 10, 16, 17, 18, 20, 24, 25, 26, 27, 28, 30, 32, 33, 34,

35, 36, 37, 38, 40,→}. Then, we find that g(S) = 39, I = [8], J = [10],

Ap(S, 8) = {s ∈ S : s−8 ∈ S} = {0, 10, 17, 20, 27, 29, 30, 47} and Ap(S, 10) =

{0, 8, 16, 17, 24, 25, 32, 33, 41, 49}.

Thus, we obtain that [8] ∩ Ap(S, 8) = ∅ and [10] ∩ Ap(S, 10) = ∅ by

Lemma 3.3, and we write that [8] ∪ Ap(S, 8) = S and [10] ∪ Ap(S, 6) = S

by Theorem 3.4. Thus, we find that 2.8 + 2 = 18 /∈ Ap(S, 8) and 2.8 + 2 =

18 /∈ Ap(S, 10) by Lemma 3.5.

Theorem 3.7. S\(I + J) = Ap(S, a) ∪ Ap(S, a + 2) ∪ {g(S) + 2a + 2} ∪

{l.c.m.(a, a + 2)}.

Proof. Assume x /∈ S\(I + J). Then either x /∈ S or x ∈ I + J .

If x /∈ S, then

(i) x /∈ Ap(S, a) since Ap(S, a) ⊂ S,

(ii) x /∈ Ap(S, a + 2) since Ap(S, a + 2) ⊂ S,

(iii) x 6= g(S) + 2a + 2 since g(S) + 2a + 2 ∈ S, and

(iv) x 6= l.c.m.(a, a + 2) since l.c.m.(a, a + 2) = g(S) + 1 ∈ S.
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If x ∈ I + J , then

(i)x /∈ Ap(S, a) since Lemma 2.7 and Lemma 3.3,

(ii)x /∈ Ap(S, a + 2) since Lemma 2.7 and Lemma 3.3,

(iii)x 6= g(S) + 2a + 2 since I + J = [2a + 2] and g(S) /∈ S,

(iv) x 6= l.c.m.(a, a + 2) since I + J = [2a + 2] and g(S) /∈ S.

In either case we have x /∈ Ap(S, a) ∪ Ap(S, a + 2) ∪ {g(S) + 2a + 2} ∪

{l.c.m.(a, a + 2)}. We conclude Ap(S, a)∪Ap(S, a + 2)∪ {g(S) + 2a + 2} ∪

{l.c.m.(a, a + 2)} ⊆ S\(I + J).

For the reverse containment, assume x ∈ S\(I + J). If x ∈ I ∩ J ,

then x = g(S) + 2a + 2 or x = l.c.m.(a, a + 2) by Theorem 2.8. On the

other hand, if x /∈ I ∩ J , then either x /∈ I which implies x − a /∈ S and

hence x ∈ Ap(S, a), or x /∈ J which implies x − (a + 2) /∈ S and hence

x ∈ Ap(S, a + 2).

In either case we conclude that x ∈ Ap(S, a) ∪ Ap(S, a + 2) ∪ {g(S) +

2a + 2} ∪ {l.c.m.(a, a + 2)}.

Example 3.8. Let S =< 4, 6, 9 > and I = [4] and J = [6] as in

(2.5.). Then, we conclude Ap(S, 4) = {0, 6, 9, 15} and hence Ap(S, 6) =

{0, 4, 8, 9, 13, 17}. Finally, we obtain that S\[10] = Ap(S, 4) ∪ Ap(S, 6) ∪

{g(S) + 4 + 6} ∪ {l.c.m.(4, 6)} = {0, 4, 6, 8, 9, 12, 13, 15, 17, 21} by Theorem

3.7.
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