Characterizations of weak Cauchy sn-symmetric spaces 1

Xun Ge, Jinjin Li

Abstract

This paper proves that a space X is a weak Cauchy sn-symmetric space iff it is a sequentially-quotient, π -image of a metric space, which answers a question posed by Z. Li.

2000 Mathematics Subject Classification: 54C05, 54C10, 54E40. Key words and phrases: sn-symmetric space, Weak Cauchy condition, Sequentially-quotient mapping, π -mapping.

1 Introduction

sn-symmetric spaces is an important generalization of symmetric spaces. Recently, Y. Ge and S. Lin [10] investigate sn-symmetric spaces and obtained some interesting results. However, how characterize sn-symmetric spaces as images of metric spaces? This question is still open. As is well known, each

Accepted for publication (in revised form) 22 January, 2009

¹Received 17 June, 2008

weak Cauchy symmetric space can be characterized as a quotient, π -image of a metric space [11]. By viewing this result, Z. Li posed the following question [12, Question 3.2].

Question 1 How characterize weak Cauchy sn-symmetric spaces by means of certain π -images of metric spaces?

In this paper, we prove that a space X is a weak Cauchy sn-symmetric space iff it is a sequentially-quotient, π -image of a metric space, which answers Question 1 affirmatively.

Throughout this paper, all spaces are assumed to be Hausdorff, and all mappings are continuous and onto. \mathbb{N} denotes the set of all natural numbers. Let P be a subset of a space X and $\{x_n\}$ be a sequence in X converging to x. $\{x_n\}$ is eventually in P if $\{x_n : n > k\} \bigcup \{x\} \subset P$ for some $k \in \mathbb{N}$; it is frequently in P if $\{x_{n_k}\}$ is eventually in P for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. Let P be a family of subsets of a space X and $x \in X$. $\bigcup P$ and $\bigcap P$ denote the union $\bigcup \{P : P \in P\}$ and the intersection $\bigcap \{P : P \in P\}$, respectively. $(P)_x = \{P \in P : x \in P\}$ and $st(x,P) = \bigcup (P)_x$. A sequence $\{P_n : n \in \mathbb{N}\}$ of subsets of a space X is abbreviated to $\{P_n\}$. A point $b = (\beta_n)_{n \in \mathbb{N}}$ of a Tychonoff-product space is abbreviated to $\{P_n\}$.

2 Definitions and Remarks

Definition 1 ([4]) Let X be a space and $x \in X$. P is called a sequential neighborhood of x, if each sequence $\{x_n\}$ converging to x is eventually in P.

Remark 1 ([5]) P is a sequential neighborhood of x iff each sequence $\{x_n\}$ converging to x is frequently in P.

Definition 2 ([6]) Let \mathcal{P} be a family of subsets of a space X and $x \in X$. \mathcal{P} is called a network at x in X, if $x \in \bigcap \mathcal{P}$ and for each neighborhood U of x, there exists $P \in \mathcal{P}$ such that $P \subset U$. Moreover, \mathcal{P} is called an sn-network at x in X if in addition each element of \mathcal{P} is also a sequential neighborhood of x.

Definition 3 Let X be a set. A non-negative real valued function d defined on $X \times X$ is called a d-function on X if d(x,x) = 0 and d(x,y) = d(y,x) for any $x,y \in X$.

Let d be a d-function on a space X. For $x \in X$ and $n \in N$, put $S_n(x) = \{y \in X : d(x,y) < 1/n\}$.

Definition 4 ([10]) (X,d) is called an sn-symmetric space and d is called an sn-symmetric on X, if $\{S_n(x) : n \in \mathbb{N}\}$ is an sn-network at x in X for each $x \in X$.

For subsets A and B of an sn-symmetric space (X, d), we write $d(A) = \sup\{d(x, y) : x, y \in A\}$ and $d(A, B) = \inf\{d(x, y) : x \in A \text{ and } y \in B\}.$

Definition 5 ([1]) Let (X, d) be an sn-symmetric space.

- (1) A sequence $\{x_n\}$ in X is called d-Cauchy if for each $\varepsilon > 0$, there exists $k \in N$ such that $d(x_n, x_m) < \varepsilon$ for all n, m > k.
- (2) (X,d) is called satisfying weak Cauchy condition if each convergent sequence has a d-Cauchy subsequence.
- (3) An sn-symmetric space satisfying weak Cauchy condition is called a weak Cauchy sn-symmetric space.

Remark 2 ([13]) (X,d) satisfies weak Cauchy condition iff for each convergent sequence L in X and for each $\varepsilon > 0$, there exists a subsequence L' of L such that $d(L') < \varepsilon$.

Definition 6 ([8]) Let \mathcal{P} be a cover of a space X. \mathcal{P} is called a cs^* -cover if for each convergent sequence L, there exists $P \in \mathcal{P}$ such that L is frequently in P.

Definition 7 ([14]) Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$. $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is called a σ -strong network of X, if $\{st(x,\mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X for each $x \in X$. Moreover, if in addition \mathcal{P}_n is also a cs^* -cover of X for each $n \in \mathbb{N}$, then \mathcal{P} is called a σ -strong network consisting of cs^* -covers.

Definition 8 ([7]). Let $f: X \longrightarrow Y$ be a mapping. f is called a sequentially-quotient mapping if for each convergent sequence S in Y, there exists a convergent sequence L in X such that f(L) is a subsequence of S.

Remark 3 Sequentially-quotient mappings are namely presequential mappings in the sense of J. R. Boone (see [2, 3, 9]).

Definition 9 ([10]) Let (X,d) be an sn-symmetric and let $f: X \longrightarrow Y$ be a mapping. f is called a π -mapping, if for each $y \in Y$ and each neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$.

3 The Main Results

Lemma 1 Let (X,d) be an sn-symmetric space, $n \in \mathbb{N}$ and $x \in X$. Put $\mathcal{P}_n = \{P \subset X : d(P) < 1/n\}$, then $st(x, \mathcal{P}_n) = S_n(x)$.

Proof. If $y \in st(x, \mathcal{P}_n)$, then there exists $P \in \mathcal{P}_n$ such that $x, y \in P$. So $d(x,y) \leq d(P) < 1/n$, and hence $y \in S_n(x)$. On the other hand, if $y \in S_n(x)$, then d(x,y) < 1/n. So $\{x,y\} \in \mathcal{P}_n$, thus $y \in st(x,\mathcal{P}_n)$. Consequently, $st(x,\mathcal{P}_n) = S_n(x)$.

Lemma 2 Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -strong network of X and $x \in X$, If $P_n \in (\mathcal{P}_n)_x$ for each $n \in \mathbb{N}$, then $\{P_n\}$ is a network at x in X.

Proof. Let $x \in U$ with U open in X. Since \mathcal{P} is a σ -strong network of X, there exists $m \in \mathbb{N}$ such that $st(x, \mathcal{P}_m) \subset U$. Note that $P_m \subset st(x, \mathcal{P}_m)$, so $x \in P_m \subset U$. This proves that $\{P_n\}$ is a network at x in X.

Lemma 3 Let $\{\mathcal{P}_n\}$ be a sequence of cs^* -covers of a space X, and S be a sequence in X converging to x. Then there is a subsequence S' of S such that for each $n \in \mathbb{N}$, S' is eventually in P_n for some $P_n \in \mathcal{P}_n$.

Proof. Since \mathcal{P}_1 is a cs^* -cover of X and S is a convergent sequence in X, there is a subsequence S_1 of S such that $S_1 \bigcup \{x\} \subset P_1$ for some $P_1 \in \mathcal{P}_1$. Put x_1 is the first term of S_1 . Similarly, \mathcal{P}_2 is a cs^* -cover of X and S_1 is a convergent sequence in X, there is a subsequence S_2 of S_1 such that $S_2 \bigcup \{x\} \subset P_2$ for some $P_2 \in \mathcal{P}_2$. Put x_2 is the second term of S_2 . Assume that x_1, x_2, \dots, x_{n-1} , S_1, S_2, \dots, S_{n-1} , and P_1, P_2, \dots, P_{n-1} have been constructed as the above method. we construct x_n , S_n and P_n as follows. Since \mathcal{P}_n is a cs^* -cover of X and S_{n-1} is a convergent sequence in X, there is a subsequence S_n of S_{n-1} such that $S_n \bigcup \{x\} \subset P_n$ for some $P_n \in \mathcal{P}_n$. Put x_n is the n-th term of S_n . By the inductive method, we construct x_n , S_n and P_n for each $n \in \mathbb{N}$. Put $S' = \{x_n\}$, then S' is a subsequence of S. For each $n \in \mathbb{N}$, $\{x_k, x\} \in S_k \subset S_n \subset P_n$ for all k > n, so S' is eventually in P_n .

Now we give the main theorem in this paper.

Theorem 1 The following are equivalent for a space X.

- (1) X is a weak Cauchy sn-symmetric space.
- (2) X has a σ -strong network consisting of cs^* -covers.
- (3) X is a sequentially-quotient, π -image of a metric space.

Proof. (1) \Longrightarrow (2): Let (X,d) be a weak Cauchy sn-symmetric space. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P \subset X : d(P) < 1/n\}$. By Lemma 1, $st(x,\mathcal{P}_n) = S_n(x)$ for each $x \in X$ and each $n \in \mathbb{N}$. $\{st(x,\mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X for each $x \in X$ because $\{S_n(x) : n \in \mathbb{N}\}$ is a network at x in X. It is clear that $\mathcal{P}_{n+1} \subset \mathcal{P}_n$, so \mathcal{P}_{n+1} refines \mathcal{P}_n . Thus $\{\mathcal{P}_n\}$ is a σ -strong network of X. Let $n \in \mathbb{N}$ and $L = \{x_k\}$ be a sequence in X converging to x. It suffices to prove that L is frequently in P for some $P \in \mathcal{P}_n$. Without loss of generality, we may assume that $d(x,x_k) < 1/n$ for each $k \in N$. Since (X,d) satisfying weak Cauchy condition, by Remake 2.7, there exists a subsequence L' of L such that d(L') < 1/n. Put $P = L' \bigcup \{x\}$, then d(P) < 1/n, and hence L is frequently in $P \in \mathcal{P}_n$.

(2) \Longrightarrow (3): Let X have a σ -strong network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ consisting of cs^* -covers. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\beta : \beta \in \Lambda_n\}$, and Λ_n is endowed with discrete topology. Put

$$M = \{b = (\beta_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\beta_n}\} \text{ is a network at some } x_b \text{ in } X\}.$$

Claim 1. M is a metric space:

In fact, Λ_n , as a discrete space, is a metric space for each $n \in \mathbb{N}$. So M, which is a subspace of the Tychonoff-product space $\prod_{n \in \mathbb{N}} \Lambda_n$, is a metric space.

The metric d on M can be described as follows. Let $b=(\beta_n), c=(\gamma_n)\in M$. If b=c, then d(b,c)=0. If $b\neq c$, then $d(b,c)=1/\min\{n\in\mathbb{N}:\beta_n\neq\gamma_n\}$.

Claim 2. Let $b = (\beta_n) \in M$. Then there exists unique $x_b \in X$ such that $\{P_{\beta_n}\}$ is a network at x_b in X:

The existence comes from the construction of M, we only need to prove the uniqueness. Let $\{P_{\beta_n}\}$ be a network at both x_b and x'_b in X, then $\{x_b, x'_b\} \subset P_{\beta_n}$ for each $n \in \mathbb{N}$. If $x_b \neq x'_b$, then there exists an open neighborhood U

of x_b such that $x_b' \notin U$. Because $\{P_{\beta_n}\}$ is a network at x_b in X, there exists $n \in \mathbb{N}$ such that $x_b \in P_{\beta_n} \subset U$, thus $x_b' \notin P_{\beta_n}$, a contradiction. This proves the uniqueness.

We define $f: M \longrightarrow X$ as follows: for each $b = (\beta_n) \in M$, put $f(b) = x_b$, where $\{P_{\beta_n}\}$ is a network at x_b in X. By Claim 2, f is definable.

Claim 3. f is onto:

Let $x \in X$. For each $n \in \mathbb{N}$, there exists $\beta_n \in \Lambda_n$ such that $P_{\beta_n} \in (\mathcal{P}_n)_x$ because \mathcal{P}_n is a cover of X. Since \mathcal{P} is a σ -strong network of X, $\{P_{\beta_n}\}$ is a network at x in X by Lemma 2. Put $b = (\beta_n)$, then $b \in M$ and f(b) = x. This proves that f is onto.

Claim 3. f is continuous:

Let $b=(\beta_n)\in M$ and let f(b)=x. If U is an open neighborhood of x, then there exists $k\in\mathbb{N}$ such that $x\in P_{\beta_k}\subset U$ because $\{P_{\beta_n}\}$ is a network at x in X. Put $V=((\prod\{\Lambda_n:n< k\})\times\{\beta_k\}\times(\prod\{\Lambda_n:n> k\}))\cap M$, then V is an open neighborhood of b. Let $c=(\gamma_n)\in V$, then $\{P_{\gamma_n}\}$ is a network at f(c) in X, so $f(c)\in P_{\gamma_n}$ for each $n\in\mathbb{N}$. Note that $\gamma_k=\beta_k$, $f(c)\in P_{\gamma_k}=P_{\beta_k}$. This proves that $f(V)\subset P_{\beta_k}$, and hence $f(V)\subset U$. So f is continuous.

Claim 4. f is a π -mapping.

Let $x \in U$ with U open in X. Since \mathcal{P}_n is a σ -strong network of X, there exists $n \in \mathbb{N}$ such that $st(x, \mathcal{P}_n) \subset U$. It suffices to prove that $d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0$. Let $b = (\beta_n) \in M$. If $d(f^{-1}(x), b) < 1/2n$, then there is $c = (\gamma_n) \in f^{-1}(x)$ such that d(b, c) < 1/n, so $\beta_k = \gamma_k$ if $k \leq n$. Notice that $x = f(c) \in P_{\gamma_n} \in \mathcal{P}_n$ and $f(b) \in P_{\beta_n} = P_{\gamma_n}$, so $f(b) \in st(x, \mathcal{P}_n) \subset U$, thus $b \in f^{-1}(U)$. This proves that $d(f^{-1}(x), b) \geq 1/2n$ if $b \in M - f^{-1}(U)$, so $d(f^{-1}(x), M - f^{-1}(U)) \geq 1/2n > 0$.

Claim 5. f is a sequentially-quotient mapping.

Let S be a sequence in X converging to $x \in X$. By Lemma 3, there exists a subsequence $S' = \{x_k\}$ of S such that for each $n \in N$, S' is eventually in P_{β_n} for some $\beta_n \in \Lambda_n$. Note that $x \in P_{\beta_n}$ for each $n \in \mathbb{N}$. Put $b = (\beta_n)$, then $b \in M$ and f(b) = x by Lemma 2. For each $k \in \mathbb{N}$, we pick $b_k \in f^{-1}(x_k)$ as follows. For each $n \in N$, if $x_k \in P_{\beta_n}$, put $\beta_{k_n} = \beta_n$; if $x_k \notin P_{\beta_n}$, pick $\beta_{k_n} \in \Lambda_n$ such that $x_k \in P_{\beta_{k_n}}$. Put $b_k = (\beta_{k_n}) \in \prod_{n \in \mathbb{N}} \Lambda_n$, then $b_k \in M$ and $f(b_k) = x_k$ by Lemma 2. Put $L = \{b_k\}$, then L is a sequence in M and f(L) = S'. It suffices to prove that L converges to b. Let $b \in U$, where U is an element of base of M. By the definition of Tychonoff-product spaces, we may assume $U = ((\prod \{\{\beta_n\} : n \leq m\}) \times (\prod \{\Lambda_n : n > m\})) \cap M$, where $m \in \mathbb{N}$. For each $n \leq m$, S' is eventually in P_{β_n} , so there is $k(n) \in N$ such that $x_k \in P_{\beta_n}$ for all k > k(n), thus $\beta_{k_n} = \beta_n$. Put $k_0 = \max\{k(1), k(2), ..., k(m), m\}$, then $b_k \in U$ for all $k > k_0$, so L converge to b.

By the above Claims, X is a sequentially-quotient, π -image of a metric space.

(3) \Longrightarrow (1): Let f be a sequentially-quotient, π -mapping from a metric space (M,d) onto X. Put $d'(x,y)=d(f^{-1}(x),f^{-1}(y))$ for each $x,y\in X$. It is clear that d' is a d-function on X. For $b\in M$, $x\in X$ and $n\in \mathbb{N}$, put $S_n(b)=\{c\in M:d(b,c)<1/n\}$ and $S'_n(x)=\{y\in X:d'(x,y)<1/n\}$.

Claim 1. $\{S'_n(x): n \in \mathbb{N}\}\$ is a network at x in X for each $x \in X$:

Let U be an open neighborhood of x in X. Since f is a π -mapping, there exists $n \in \mathbb{N}$ such that $d(f^{-1}(x), M - f^{-1}(U)) \ge 1/n$. If $y \notin U$, then $f^{-1}(y) \subset M - f^{-1}(U)$, hence $d'(x,y) = d(f^{-1}(x), f^{-1}(y)) \ge d(f^{-1}(x), M - f^{-1}(U)) \ge 1/n$, so $y \notin S'_n(x)$. This proves that $S'_n(x) \subset U$.

Claim 2. Let $x \in X$ and $n \in \mathbb{N}$. Then $S'_n(x)$ is a sequential neighborhood of x:

Let $\{x_m\}$ be a sequence converging to x. By Remark 1, it suffices to prove that $\{x_m\}$ is frequently in $S'_n(x)$. Since f is sequentially-quotient, there exists a sequence $\{b_k\}$ converging to $b \in f^{-1}(x)$ such that each $f(b_k) = x_{m_k}$. Pick $k_0 \in \mathbb{N}$ such that $d(b,b_k) < 1/n$ for all $k \geq k_0$. So $d'(x,x_{m_k}) = d(f^{-1}(x),f^{-1}(x_{m_k})) \leq d(b,b_k) < 1/n$ for all $k \geq k_0$, and hence $x_{m_k} \in S'_n(x)$ for all $k \geq k_0$. Thus $\{x_{m_k}\}$ is eventually in $S'_n(x)$, that is, $\{x_m\}$ is frequently in $S'_n(x)$.

Claim 3. (X, d') satisfies weak Cauchy condition:

Let $\{x_n\}$ be a convergent sequence in X. Since f is sequentially-quotient, there exists a convergent sequence $L = \{b_k\}$ in M such that $f(b_k) = x_{n_k}$ for each $k \in \mathbb{N}$. It suffices to prove that x_{n_k} is a d-Cauchy subsequence. Let $\varepsilon > 0$. Note that each convergent sequence in metric space (M, d) is a d-Cauchy sequence. So there exists $k_0 \in \mathbb{N}$ such that $d(b_i, b_j) < \varepsilon$ for all $i, j > k_0$. Thus $d'(x_{n_i}, x_{n_j}) = d(f^{-1}(x_{n_i}), f^{-1}(x_{n_j})) \le d(b_i, b_j) < \varepsilon$ for all $i, j > k_0$. This proves that x_{n_k} is a d-Cauchy subsequence.

By the above Claims, d' is an sn-symmetric on X and (X, d') satisfies weak Cauchy condition. So X is a weak Cauchy sn-symmetric space.

Remark 4 " σ -strong network" in Theorem 1 can be replaced by "point-star network", where the concept of "point-star networks" is obtained by omitting " \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$ " in the Definition 7 [13].

The author would like to thank Professor Z. Yun for his valuable amendments and suggestions.

Acknowledgement. This project was supported by NSFC(No.10971185 and 10971186).

References

- [1] A.V.Arhangel'skii, Behavior of metrizability under factor mappings, Soviet Math. Dokl., 6(1965), 1187-1190.
- [2] J.R.Boone, A note on mesocompact and sequentially mesocompact spaces, Pacific J. Math., 44(1973), 69-74.
- [3] J.R.Boone and F.Siwiec, Sequentially quotient mappings, Czech. Math. J., 26(1976), 174-182.
- [4] S.P.Franklin, Spaces in which sequence suffice, Fund. Math., 57(1965), 107-115.
- [5] X.Ge, On countable-to-one images of metric space, Topology Proc., 31(2007), 115-123.
- [6] X.Ge, Spaces with a locally countable sn-network, Lobachevskii Journal of Math., 26(2007), 33-49.
- [7] Y.Ge, Characterizations of sn-metrizable spaces, Publications de L'Institut Mathematique, 74(88)(2003), 121-128.
- [8] Y.Ge, Spaces with countable sn-networks, Comment Math. Univ. Carolinae, 45(2004), 169-176.
- [9] Y.Ge, On closed images of sequentially mesocompact spaces, Topology Proc., 30(2006), 449-457.
- [10] Y.Ge and S.Lin, g-Metrizable spaces and the images of semi-metric spaces,Czech. Math. J., 57(2007), 1141-1149.

- [11] J.A.Kofner, On a new class of spaces and some problems of symmetrizable theory, Soviet Math. Dokl., 10(1969), 845-848.
- [12] Z.Li, g-metrizable spaces, uniform weak-bases and related results, 2007 International General Topology Symposium, Guangxi University, Nanning, P.R.China.
- [13] S.Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. (in Chinese)
- [14] Y.Tanaka and Y.Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32(2006), 99-117.

Xun Ge

Jiangsu University of Science and Technology College of Zhangjiagang Zhangjiagang 215600, P. R. China e-mail:zhugexun@163.com

Jinjin Li

Zhangzhou Teachers College Department of Mathematics Zhangzhou 363000, P. R. China e-mail:jinjinli@fjzs.edu.cn