A general class of holomorphic functions defined by integral operator ¹

Camelia Mădălina Bălăeți

Abstract

By using the integral operator $I^m f(z)$, $z \in U$ we introduce a class of holomorphic functions, denoted by $\mathcal{I}_n^m(\alpha)$, and we obtain inclusion relations related to this class and some differential subordinations.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Differential subordination, Integral operator, Convex functions, Holomorphic function.

1 Introduction and preliminaries

We denote the complex plane by \mathbb{C} and the open unit disk by U:

$$U = \{z \in \mathbb{C} : |z| < 1\}.$$

Let $\mathcal{H}(U)$ be the set of holomorphic function in U.

Accepted for publication (in revised form) 22 October, 2008

¹Received 9 October, 2008

For n a positive integer and $a \in \mathbb{C}$, let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U), \ f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

with $\mathcal{H}_0 = \mathcal{H}[0,1]$.

We define the class of normalized analytic functions A_n as

$$A_n = \{ f \in \mathcal{H}[U], \ f(z) = z + a_{n+1}z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$.

Let

$$K = \left\{ f \in A : \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > 0, \ z \in U \right\}$$

denote the class of normalized convex functions in U.

Let f and g be analytic functions in U. The function f is said to be subordinate to g written $f \prec g$, or $f(z) \prec g(z)$, if there is a function w analytic in U with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g[w(z)] for $z \in U$. If g is univalent, then $f \prec g$ if f(0) = g(0) and $f(U) \subset g(U)$.

Definition 1 Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

(1)
$$\psi\left(p(z), zp'(z), z^2p''(z); z\right) \prec h(z),$$

then p is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, if $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec p$ for all dominants q of (1) is said to be the best dominant of (1).

Note that the best dominant is unique up a rotation of U.

We will need the following lemma, which is due to D.J. Hallenbeck and St. Ruscheweyh.

Lemma 1 [2] Let h be a convex function with $h(0) \equiv a$ and let $\gamma \in \mathbb{C}^*$ be a complex number with Re $\gamma \geq 0$. If $p \in \mathcal{H}(U)$ with p(0) = a and

$$p(z) + \frac{1}{\gamma} z p'(z) \prec h(z)$$

then

$$p(z) \prec g(z) \prec h(z)$$

where

$$g(z) = \frac{\gamma}{nz^{\frac{\gamma}{n}-1}} \int_0^z h(t)t^{\frac{\gamma}{n}-1}dt.$$

The function g is convex and is the best dominant.

The following lemma is due to S.S. Miller and P.T. Mocanu.

Lemma 2 [4] Let g be a convex function in U and let

$$h(z) = g(z) + n\alpha z g'(z)$$

where $\alpha > 0$ and n is a positive integer. If $p(z) = g(0) + p_n z^n + \cdots$ is holomorphic in U and

$$p(z) + \alpha z p'(z) \prec h(z),$$

then

$$p(z) \prec q(z)$$

and this result is sharp.

Definition 2 [6] For $f \in \mathcal{H}(U)$, f(0) = 0 and $m \in \mathbb{N}$ we define the operator $I^m f$ by

$$I^{0}f(z) = f(z)$$

$$I^{1}f(z) = If(z) = \int_{0}^{z} f(t)t^{-1}dt$$

$$I^{m}f(z) = I\left(I^{m-1}f(z)\right), \ z \in U.$$

Remark 1 If $f \in \mathcal{H}(U)$ and $f(z) = \sum_{j=1}^{\infty} a_j z^j$ then $I^m f(z) = \sum_{j=1}^{\infty} j^{-m} a_j z^j$.

Remark 2 For m = 1, $I^m f$ is the Alexander operator.

Remark 3 If we denote $l(z) = -\log(1-z)$, then

$$I^{m} f(z) = [(l * ... * l) * f](z), f \in \mathcal{H}(U), f(0) = 0.$$

By "*" we denote the Hadamard product or convolution (i.e. if $f(z) = \sum_{j=0}^{\infty} a_j z^j$, $g(z) = \sum_{j=0}^{\infty} b_j z^j$ then $(f * g)(z) = \sum_{j=0}^{\infty} a_j b_j z^j$).

Remark 4 $I^m f(z) = \int_0^z \int_0^{t_m} ... \int_0^{t_2} \frac{f(t_1)}{t_1 t_2 ... t_m} dt_1 dt_2 ... dt_m$, $f \in \mathcal{H}(U)$, f(0) = 0.

Remark 5 $D^m I^m f(z) = I^m D^m f(z) = f(z), f \in \mathcal{H}(U), f(0) = 0, where <math>D^m$ is the Sălăgean differential operator.

2 Main results

Definition 3 If $0 \le \alpha < 1$ and $m \in \mathbb{N}$, let $\mathcal{I}_n^m(\alpha)$ denote the class of functions $f \in A_n$ which satisfy the inequality:

(2)
$$\operatorname{Re}\left[I^{m}f(z)\right]' > \alpha.$$

Remark 6 For m = 0, we obtain

(3)
$$\operatorname{Re} f'(z) > \alpha, \ z \in U.$$

Theorem 1 If $0 \le \alpha < 1$ and $m, n \in \mathbb{N}$, then we have

(4)
$$\mathcal{I}_n^m(\alpha) \subset \mathcal{I}_n^{m+1}(\delta),$$

where

$$\delta(\alpha, n) = 2\alpha - 1 + 2(1 - \alpha)\frac{1}{n}\beta(\frac{1}{n})$$

and

$$\beta(x) = \int_0^z \frac{t^{x-1}}{1+t} dt.$$

The result is sharp.

Proof. Assume that $f \in \mathcal{I}_n^m(\alpha)$. Then we have

$$I^m f(z) = z[I^{m+1} f(z)]', \ z \in U$$

and differentiating this equality we obtain

(5)
$$[I^m f(z)]' = [I^{m+1} f(z)]' + z [I^{m+1} f(z)]'', \ z \in U.$$

If $p(z) = [I^{m+1}f(z)]'$, then (5) becomes

(6)
$$[I^m f(z)]' = p(z) + zp'(z), \ z \in U.$$

Since $f \in \mathcal{I}_n^m(\alpha)$, from Definition 3 we have

$$\operatorname{Re}[p(z) + zp'(z)] > \alpha, \ z \in U$$

which is equivalent to

$$p(z) + zp'(z) \prec \frac{1 + (2\alpha - 1)z}{1 + z} \equiv h(z), \ z \in U.$$

Therefore, from Lemma 1 results that

$$p(z) \prec q(z) \prec h(z), z \in U$$

where

$$g(z) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z \frac{1 + (2\alpha - 1)t}{1 + t} t^{\frac{1}{n} - 1} dt$$

$$= \frac{1}{nz^{\frac{1}{n}}} \int_0^z (2\alpha - 1)t^{\frac{1}{n} - 1}dt + \frac{2(1 - \alpha)}{nz^{\frac{1}{n}}} \int_0^z \frac{t^{\frac{1}{n} - 1}}{1 + t}dt$$
$$= 2\alpha - 1 + 2(1 - \alpha)\frac{1}{n}\beta\left(\frac{1}{n}\right)\frac{1}{z^{\frac{1}{n}}}, \ z \in U.$$

Moreover, the function g is convex and is the best dominant.

From $p(z) \prec g(z)$, it results that

$$\operatorname{Re} p(z) > \operatorname{Re} g(1) = \delta(\alpha, n) = 2\alpha - 1 + 2(1 - \alpha) \frac{1}{n} \beta\left(\frac{1}{n}\right),$$

from which we deduce that $\mathcal{I}_n^m(\alpha) \subset \mathcal{I}_n^{m+1}(\delta)$.

Theorem 2 Let g be a convex function, g(0) = 1 and let h be a function such that

$$h(z) = g(z) + nzg'(z), \ z \in U.$$

If $f \in A_n$ and verifies the differential subordination

$$[I^m f(z)]' \prec h(z)$$

then

$$\left[I^{m+1}f(z)\right]' \prec g(z), \ z \in U$$

and this result is sharp.

Proof. From the relation (6) and differential subordination (7), we obtain

$$p(z) + zp'(z) \prec g(z) + nzg'(z) \equiv h(z).$$

By using Lemma 2, we have

$$p(z) \prec g(z)$$

i.e.

$$\left[I^{m+1}f(z)\right]' \prec g(z)$$

and this result is sharp.

Theorem 3 Let $h \in \mathcal{H}(U)$, with h(0) = 1, $h'(0) \neq 0$, which verifies the inequality

$$\operatorname{Re}\left[1 + \frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2n}, \ z \in U.$$

If $f \in A_n$ and verifies the differential subordination

$$[I^m f(z)]' \prec h(z),$$

then

$$\left[I^{m+1}f(z)\right]' \prec g(z), \ z \in U$$

where

$$g(z) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t)t^{\frac{1}{n}-1}dt, \ z \in U.$$

The function g is convex and is the best dominant.

Proof. A simple application of the differential subordination technique shows that the function g is convex. From

$$I^m f(z) = z[I^{m+1} f(z)]'$$

we obtain

$$[I^mf(z)]' = \left[I^{m+1}f(z)\right]' + z\left[I^{m+1}f(z)\right]'', \ z \in U.$$

If we assume

$$p(z) = [I^{m+1}f(z)]'$$

then

$$[I^m f(z)]' = p(z) + zp'(z), \ z \in U$$

hence (8) becomes

$$p(z) + zp'(z) \prec h(z)$$
.

Moreover, from Lemma 1 it results that

$$p(z) \prec g(z) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t)t^{\frac{1}{n}-1}dt$$

i.e.

$$\left[I^{m+1}f(z)\right]' \prec g(z)$$

and g is the best dominant.

Theorem 4 Let g be a convex function, g(0) = 1, and

$$h(z) = g(z) + nzg'(z).$$

If $f \in A_n$ and verifies the differential subordination

$$\left[I^{m}f(z)\right]' \prec h(z)$$

then

$$\frac{I^m f(z)}{z} \prec g(z), \ z \in U, \ z \neq 0.$$

The result is sharp.

Proof. If

$$p(z) = \frac{I^m f(z)}{z}, \ z \in U, \ z \neq 0$$

then it results that

(10)
$$I^m f(z) = zp(z).$$

Differentiating (10), we obtain

$$[I^m f(z)]' = p(z) + zp'(z), \ z \in U.$$

hence (9) becomes

(11)
$$p(z) + zp'(z) \prec h(z) \equiv q(z) + nzq'(z), z \in U.$$

Therefore, from Lemma 2 it results that

$$p(z) \prec g(z)$$
,

i.e.

$$\frac{I^m f(z)}{z} \prec g(z), \ z \in U$$

and the result is sharp.

Theorem 5 Let $f \in \mathcal{H}(U)$, h(0) = 0, $h'(0) \neq 0$ which satisfy the inequality

Re
$$\left[1 + \frac{zh''(z)}{h'(z)}\right] > -\frac{1}{2}, \ z \in U.$$

If $f \in A_n$ and verifies the differential subordination

$$(12) [I^m f(z)]' \prec h(z)$$

then

$$\frac{I^m f(z)}{z} \prec g(z), \ z \in U, \ z \neq 0,$$

where

$$g(z) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t)t^{\frac{1}{n}-1}dt, \ z \in U.$$

The function g is convex and is the best dominant.

Proof. A simple application of the differential subordination technique shows that the function g is convex.

Differentiating (10) we obtain

$$[I^m f(z)]' = p(z) + zp'(z).$$

Then (12) becomes

$$p(z) + zp'(z) \prec h(z), z \in U.$$

By using Lemma 1 we have

$$p(z) \prec g(z)$$

where

$$g(z) = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} h(t)t^{\frac{1}{n}-1}dt$$

and g is convex and is the best dominant.

For n = 1, this results was obtained in [1].

We remark that in the case of Sălăgean differential operator a similar results was obtained by G.I. Oros in [5].

Acknowledgement. This work is supported by the UEFISCSU-CNCSIS Grant PN-II-IDEI 524/2007.

References

- C.M. Bălăeţi, A class of holomorphic functions defined by integral operator, Acta Universitatis Apulenssis, Mathematics-Informatics, 15, 2008, 379-386.
- [2] D.J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52, 1975, 191-195.
- [3] S.S. Miller and P.T. Mocanu, *Differential Subordinations*. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
- [4] S.S.Miller and P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32, 1985, 185-195.
- [5] G.I. Oros, On a class of holomorphic functions defined by Sălăgean differential operator, Complex Variables, vol.50, no.4, 2005, 257-264.

[6] G.Şt. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013, 1983, 362-372.

Camelia Mădălina Bălăeţi

University of Petroşani

Departament of Mathematics and Computer Science

University Str., No. 20, 332006, Petroşani, Romania

e-mail: balaetim@yahoo.com