A new univalent integral operator defined by Al-Oboudi differential operator ¹

Serap Bulut

Abstract

In [3], Breaz and Breaz gave an univalence condition of the integral operator $G_{n,\alpha}$ introduced in [2]. The purpose of this paper is to give univalence condition of the generalized integral operator $G_{n,m,\alpha}$ defined in [4]. Our results generalize the results of [3].

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic functions, Univalent functions, Integral operator, Differential operator, Schwarz lemma.

1 Introduction

Let \mathcal{A} denote the class of all functions of the form

(1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

Accepted for publication (in revised form) 3 December, 2008

¹Received 20 November, 2008

which are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\},$ and

$$S = \{ f \in A : f \text{ is univalent in } \mathbb{U} \}.$$

For $f \in \mathcal{A}$, Al-Oboudi [1] introduced the following operator:

$$(2) D^0 f(z) = f(z),$$

(3)
$$D^{1}f(z) = (1 - \delta)f(z) + \delta z f'(z) = D_{\delta}f(z), \quad \delta \ge 0$$

(4)
$$D^n f(z) = D_{\delta}(D^{n-1} f(z)), \quad (n \in \mathbb{N} := \{1, 2, 3, \dots\}).$$

If f is given by (1), then from (3) and (4) we see that

(5)
$$D^n f(z) = z + \sum_{k=2}^{\infty} [1 + (k-1)\delta]^n a_k z^k, \quad (n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}),$$

with $D^n f(0) = 0$.

Remark 1 When $\delta = 1$, we get Sălăgean's differential operator [9].

The following results will be required in our investigation.

General Schwarz Lemma. [5] Let the function f be regular in the disk $\mathbb{U}_R = \{z \in \mathbb{C} : |z| < R\}$, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} |z|^m \quad (z \in \mathbb{U}_R).$$

The equality can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

Theorem A. [7] Let α be a complex number with $Re\alpha > 0$ and $f \in A$. If f satisfies

$$\frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \quad (z \in \mathbb{U}),$$

then, for any complex number β with $Re\beta \geq Re\alpha$, the integral operator

$$F_{\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} f'(t) dt \right\}^{\frac{1}{\beta}}$$

is in the class S.

Theorem B. [6] Let $f \in A$ satisfy the following inequality:

(6)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \le 1 \quad (z \in \mathbb{U}).$$

Then f is univalent in \mathbb{U} .

Theorem C. [8] Assume that $g \in \mathcal{A}$ satisfies condition (6), and let α be a complex number with

$$|\alpha - 1| \le \frac{Re\alpha}{3}.$$

If

$$|g(z)| \le 1, \quad \forall z \in \mathbb{U}$$

then the function

(7)
$$G_{\alpha}(z) = \left\{ \alpha \int_{0}^{z} (g(t))^{\alpha - 1} dt \right\}^{\frac{1}{\alpha}}$$

is of class S.

In [2], Breaz and Breaz considered the integral operator

(8)
$$G_{n,\alpha}(z) := \left\{ [n(\alpha - 1) + 1] \int_0^z (g_1(t))^{\alpha - 1} \cdots (g_n(t))^{\alpha - 1} dt \right\}^{\frac{1}{n(\alpha - 1) + 1}},$$

 $(g_1, \ldots, g_n \in \mathcal{A})$, and proved that the function $G_{n,\alpha}$ is univalent in \mathbb{U} .

Remark 2 Note that for n = 1, we obtain the integral operator G_{α} defined by (7).

Theorem D. [3] Let $g_i \in \mathcal{A}$, $\forall i = 1, ..., n, n \in \mathbb{N}$, satisfy the properties

$$\left| \frac{z^2 g_i'(z)}{(g_i(z))^2} - 1 \right| < 1, \quad \forall z \in \mathbb{U}, \quad \forall i = 1, \dots, n$$

and $\alpha \in \mathbb{C}$ with

$$|\alpha - 1| \le \frac{Re\alpha}{3n}.$$

If

$$|q_i(z)| < 1, \ \forall z \in \mathbb{U}, \ \forall i = 1, \dots, n,$$

then the function $G_{n,\alpha}$ defined by (8) is univalent.

In [4], the author introduced a new general integral operator by means of the Al-Oboudi differential operator as follows.

Definition 1 [4] Let $n \in \mathbb{N}$, $m \in \mathbb{N}_0$ and $\alpha \in \mathbb{C}$. We define the integral operator $G_{n,m,\alpha}$ by

(9)

$$G_{n,m,\alpha}(z) := \left\{ [n(\alpha - 1) + 1] \int_0^z \prod_{j=1}^n (D^m g_j(t))^{\alpha - 1} dt \right\}^{\frac{1}{n(\alpha - 1) + 1}} \quad (z \in \mathbb{U}),$$

where $g_1, \ldots, g_n \in \mathcal{A}$ and D^m is the Al-Oboudi differential operator.

Remark 3 In the special case n = 1, we obtain the integral operator

(10)
$$G_{m,\alpha}(z) := \left\{ \alpha \int_0^z \left(D^m g(t) \right)^{\alpha - 1} dt \right\}^{\frac{1}{\alpha}} \quad (z \in \mathbb{U}).$$

Remark 4 If we set m = 0 in (9) and (10), then we obtain the integral operators defined in (8) and (7), respectively.

2 Main Results

Theorem 1 Let $M_j \geq 1$, each of the functions $g_j \in \mathcal{A}$ $(j \in \{1, ..., n\})$ satisfies the inequality

(11)
$$\left| \frac{z^2 \left(D^m g_j(z) \right)'}{\left(D^m g_j(z) \right)^2} - 1 \right| \le 1 \quad (z \in \mathbb{U}; \ m \in \mathbb{N}_0).$$

and $\alpha \in \mathbb{C}$ with

$$|\alpha - 1| \le \frac{Re\alpha}{\sum_{j=1}^{n} (2M_j + 1)}, Re\left(n\left(\alpha - 1\right) + 1\right) \ge Re\alpha > 0.$$

If

$$|D^m g_j(z)| \le M_j \quad (z \in \mathbb{U}; \ j \in \{1, \dots, n\}),$$

then the integral operator $G_{n,m,\alpha}$ defined by (9) is in the univalent function class S.

Proof. Since $g_j \in \mathcal{A} \ (j \in \{1, ..., n\})$, by (5), we have

$$\frac{D^m g_j(z)}{z} = 1 + \sum_{k=2}^{\infty} \left[1 + (k-1)\delta \right]^m a_{k,j} z^{k-1} \quad (m \in \mathbb{N}_0)$$

and

$$\frac{D^m g_j(z)}{z} \neq 0$$

for all $z \in \mathbb{U}$.

Also we note that

$$G_{n,m,\alpha}(z) = \left\{ [n(\alpha - 1) + 1] \int_0^z t^{n(\alpha - 1)} \prod_{j=1}^n \left(\frac{D^m g_j(t)}{t} \right)^{\alpha - 1} dt \right\}^{\frac{1}{n(\alpha - 1) + 1}}.$$

Define a function

$$f(z) = \int_0^z \prod_{j=1}^n \left(\frac{D^m g_j(t)}{t}\right)^{\alpha - 1} dt.$$

Then we obtain

(12)
$$f'(z) = \prod_{j=1}^{n} \left(\frac{D^m g_j(z)}{z}\right)^{\alpha - 1}.$$

It is clear that f(0) = f'(0) - 1 = 0.

The equality (12) implies that

$$\ln f'(z) = (\alpha - 1) \sum_{j=1}^{n} \ln \frac{D^m g_j(z)}{z}$$

or equivalently

$$\ln f'(z) = (\alpha - 1) \sum_{j=1}^{n} (\ln D^{m} g_{j}(z) - \ln z).$$

By differentiating above equality, we get

$$\frac{f''(z)}{f'(z)} = (\alpha - 1) \sum_{j=1}^{n} \left(\frac{(D^m g_j(z))'}{D^m g_j(z)} - \frac{1}{z} \right).$$

Hence we obtain

$$\frac{zf''(z)}{f'(z)} = (\alpha - 1) \sum_{j=1}^{n} \left(\frac{z(D^{m}g_{j}(z))'}{D^{m}g_{j}(z)} - 1 \right),$$

which readily shows that

$$\begin{split} \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| & \leq \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \alpha - 1 \right| \sum_{j=1}^{n} \left(\left| \frac{z\left(D^{m}g_{j}(z)\right)'}{D^{m}g_{j}(z)} \right| + 1 \right) \\ & \leq \frac{\left| \alpha - 1 \right|}{Re\alpha} \sum_{j=1}^{n} \left(\left| \frac{z^{2}\left(D^{m}g_{j}(z)\right)'}{\left(D^{m}g_{j}(z)\right)^{2}} \right| \left| \frac{D^{m}g_{j}(z)}{z} \right| + 1 \right). \end{split}$$

From the hypothesis, we have $|g_j(z)| \leq M_j$ $(j \in \{1, ..., n\} ; z \in \mathbb{U})$, then by the General Schwarz Lemma, we obtain that

$$|g_j(z)| \le M_j |z| \quad (j \in \{1, \dots, n\} ; z \in \mathbb{U}).$$

Then we find

$$\frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq \frac{|\alpha - 1|}{Re\alpha} \sum_{j=1}^{n} \left(\left| \frac{z^2 \left(D^m g_j(z) \right)'}{\left(D^m g_j(z) \right)^2} - 1 \right| M_j + M_j + 1 \right) \\
\leq \frac{|\alpha - 1|}{Re\alpha} \sum_{j=1}^{n} \left(2M_j + 1 \right) \leq 1$$

since $|\alpha - 1| \leq \frac{Re\alpha}{\sum_{j=1}^{n} (2M_j + 1)}$. Applying Theorem A, we obtain that $G_{n,m,\alpha}$ is in the univalent function class \mathcal{S} .

Corollary 1 Let $M \geq 1$, each of the functions $g_j \in \mathcal{A}$ $(j \in \{1, ..., n\})$ satisfies the inequality (11) and $\alpha \in \mathbb{C}$ with

$$|\alpha - 1| \le \frac{Re\alpha}{(2M+1)n}$$
, $Re(n(\alpha - 1) + 1) \ge Re\alpha > 0$.

If

$$|D^m g_j(z)| \le M \quad (z \in \mathbb{U}; \ j \in \{1, \dots, n\}),$$

then the integral operator $G_{n,m,\alpha}$ defined by (9) is in the univalent function class S.

Proof. In Theorem 1, we consider $M_1 = \cdots = M_n = M$.

Corollary 2 Let each of the functions $g_j \in \mathcal{A}$ $(j \in \{1, ..., n\})$ satisfies the inequality (11) and $\alpha \in \mathbb{C}$ with

$$|\alpha - 1| \le \frac{Re\alpha}{3n}$$
, $Re(n(\alpha - 1) + 1) \ge Re\alpha > 0$.

If

$$|D^m g_j(z)| \le 1 \quad (z \in \mathbb{U}; \ j \in \{1, \dots, n\}),$$

then the integral operator $G_{n,m,\alpha}$ defined by (9) is in the univalent function class S.

Proof. In Corollary 1, we consider M = 1.

Remark 5 If we set m = 0 in Corollary 2, then we have Theorem D.

Corollary 3 Let the function $g \in A$ satisfies the inequality (11) and $\alpha \in \mathbb{C}$ with

$$|\alpha - 1| \le \frac{Re\alpha}{3}, \ Re\alpha > 0.$$

If

$$|D^m g(z)| \le 1 \quad (z \in \mathbb{U}),$$

then the integral operator $G_{m,\alpha}$ defined by (10) is in the univalent function class S.

Proof. In Corollary 2, we consider n = 1.

Remark 6 If we set m = 0 in Corollary 3, then we have Theorem C.

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
- [2] D. Breaz and N. Breaz, *Univalence of an integral operator*, Mathematica (Cluj) **47** (2005), no. 70, 35-38.
- [3] D. Breaz and N. Breaz, An integral univalent operator, Acta Math. Univ. Comenian. (N.S.) **76** (2007), no. 2, 137-142.
- [4] S. Bulut, Univalence condition for a new generalization of the family of integral operators, Acta Univ. Apulensis Math. Inform. No. 18 (2009), 71-78.

- [5] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.
- [6] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. **33** (1972), 392-394.
- [7] N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.
- [8] V. Pescar, New criteria for univalence of certain integral operators, Demonstratio Math. **33** (2000), no. 1, 51-54.
- [9] G. Ş. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.

Serap Bulut

Kocaeli University

Civi Aviation College

Arslanbey Campus

41285 İzmit-Kocaeli, Turkey

E-mail: serap.bulut@kocaeli.edu.tr