Differential subordination and superordination theorems for certain analytic functions ¹

Sukhwinder Singh, Sushma Gupta, Sukhjit Singh

Abstract

Let α, β, γ and δ be complex numbers such that $\alpha \neq 0$. Define Φ on $\mathbb{D} = \mathbb{C} \setminus \{0\}$ as

$$\Phi(w, zw'; z) = w^{\delta} \left(\beta w + \alpha \frac{zw'}{w} + \gamma\right), \ z \in \mathbb{E},$$

where $\mathbb{E} = \{z : |z| < 1\}$. We find the sufficient conditions for analytic function p, $p(z) \neq 0$ and analytic univalent functions q_1 , $q_1(z) \neq 0$ and q_2 , $q_2(z) \neq 0$ in \mathbb{E} such that

$$\Phi(q_1(z), zq_1'(z); z) \prec \Phi(p(z), zp_1'(z); z) \prec \Phi(q_2(z), zq_2'(z); z),$$

implies

$$q_1(z) \prec p(z) \prec q_2(z)$$
,

where q_1 and q_2 are, respectively, best subordinant and best dominant. We give applications of these results to univalent, ϕ -like and \mathcal{P} -valent functions and show that our results generalize and unify a number of known results.

Accepted for publication (in revised form) 04 February, 2009

¹Received 04 December, 2008

2000 Mathematics Subject Classification: 30C80, 30C45.

Key words and phrases: Convex function, Starlike function, ϕ -like function, Differential subordination, Differential superordination.

1 Introduction

Let \mathcal{H} be the class of functions analytic in the open unit disk $\mathbb{E} = \{z : |z| < 1\}$ and for $a \in \mathbb{C}$ (complex plane) and $n \in \mathbb{N}$ (set of natural numbers), let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$.

Let \mathcal{A} be the class of functions f, analytic in \mathbb{E} and normalized by the conditions f(0) = f'(0) - 1 = 0.

Denote by $S^*(\alpha)$ and $K(\alpha)$, the classes of starlike functions of order α and convex functions of order α respectively, which are analytically defined as follows:

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \Re \frac{zf'(z)}{f(z)} > \alpha, z \in \mathbb{E} \right\}$$

and

$$\mathcal{K}(\alpha) = \left\{ f \in \mathcal{A} : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, z \in \mathbb{E} \right\},$$

where α is a real number such that $0 \leq \alpha < 1$. We shall use \mathcal{S}^* and \mathcal{K} to denote $\mathcal{S}^*(0)$ and $\mathcal{K}(0)$, respectively, which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

For two analytic functions f and g in the open unit disk \mathbb{E} , we say that f is subordinate to g in \mathbb{E} and write $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with w(0) = 0 and |w(z)| < 1, $z \in \mathbb{E}$ such that $f(z) = g(w(z)), z \in \mathbb{E}$.

In case the function g is univalent, the above subordination is equivalent to f(0) = g(0) and $f(\mathbb{E}) \subset g(\mathbb{E})$.

Let $\psi: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} , with $(p(z), zp'(z)) \in \mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} , then the function p is said to satisfy first order differential subordination if

(1)
$$\psi(p(z), zp'(z)) \prec h(z), \ \psi(p(0), 0) = h(0).$$

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique upto a rotation of \mathbb{E} .

Let $\pi: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ be analytic and univalent in a domain $\mathbb{C} \times \mathbb{C}$, p be analytic and univalent in \mathbb{E} , with $(p(z), zp'(z)) \in \mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$. Then p is called a solution of the first order differential superordination if

(2)
$$h(z) \prec \pi(p(z), zp'(z)), h(0) = \pi(p(0), 0).$$

An analytic function q is called a subordinant of the differential superordination (2), if $q \prec p$ for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (2), is said to be the best subordinant of (2). The best subordinant is unique up to a rotation of \mathbb{E} .

For any two analytic functions $f(z) = \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$, the convolution of f and g, written as f * g, is defined by

$$(f * g)(z) = \sum_{n=1}^{\infty} a_n b_n z^n.$$

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$ and $\Re \phi'(0) > 0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ -like in \mathbb{E} if

$$\Re \frac{zf'(z)}{\phi(f(z))} > 0,$$

for all $z \in \mathbb{E}$. ϕ -like functions were introduced by Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ -like for some ϕ .

Later, Ruscheweyh [18] investigated the following general class of ϕ -like functions.

Let ϕ be analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. The function $f \in \mathcal{A}$ is called ϕ -like with respect to a univalent function q, q(0) = 1, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z).$$

In what follows, all the powers taken, are the principle ones.

In the present paper, we find the sufficient conditions for analytic function $p,\ p(z) \neq 0$ and analytic univalent functions $q_1,\ q_2$ with $q_1(z) \neq 0,\ q_2(z) \neq 0$ in $\mathbb E$ such that

(3)
$$\Phi(q_1(z), zq_1'(z); z) \prec \Phi(p(z), zp_1'(z); z) \prec \Phi(q_2(z), zq_2'(z); z),$$

implies

$$q_1(z) \prec p(z) \prec q_2(z)$$
.

Moreover q_1 and q_2 are, respectively, the best subordinant and the best dominant for (3) where

(4)
$$\Phi(w, zw'; z) = w^{\delta} \left(\beta w + \alpha \frac{zw'}{w} + \gamma \right), \ w \in \mathbb{D} = \mathbb{C} \setminus \{0\}, \ z \in \mathbb{E},$$

and α, β, γ and δ be complex numbers such that $\alpha \neq 0$. We give applications of our results to univalent, ϕ -like and \mathcal{P} -valent functions.

Our work is inspired by various differential operators in literature, used as criteria for starlikeness, (see ref. [3], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]).

In our present work these differential operators are unified and existing results are generalized.

2 Preliminaries

We shall use the following definition and lemmas to prove our main results.

Definition 1 ([6], p.21, Definition 2.2b) We denote by Q the set of functions p that are analytic and injective on $\overline{\mathbb{E}} \setminus \mathbb{B}(p)$, where

$$\mathbb{B}(p) = \left\{ \zeta \in \partial \mathbb{E} : \lim_{z \to \zeta} p(z) = \infty \right\},\,$$

and are such that $p'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{E} \setminus \mathbb{B}(p)$.

Lemma 1 ([6], p.132, Theorem 3.4 h) Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q_1(z)$ and suppose that either

- (i) h is convex, or
- (ii) Q_1 is starlike.

In addition, assume that

(iii)
$$\Re \frac{zh'(z)}{Q_1(z)} > 0, \ z \in \mathbb{E}.$$

If p is analytic in \mathbb{E} , with $p(0) = q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)],$$

then $p \prec q$ and q is the best dominant.

Lemma 2 ([2]) Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q_1(z)$ and suppose that

(i) Q_1 is starlike in \mathbb{E} and

(ii)
$$\Re \frac{\theta'(q(z))}{\phi(q(z))} > 0, \ z \in \mathbb{E}.$$

If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)] + zp'(z)\phi[p(z)]$ is univalent in \mathbb{E} and

$$\theta[q(z)] + zq'(z)\phi[q(z)] \prec \theta[p(z)] + zp'(z)\phi[p(z)],$$

then $q \prec p$ and q is the best subordinant.

3 Main Theorems

Theorem 1 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} such that

$$\begin{split} &(i) \ \Re \left[1 + \frac{zq''(z)}{q'(z)} + \frac{(\delta - 1)zq'(z)}{q(z)} \right] > 0 \ \ and \\ &(ii) \ \Re \left[1 + \frac{zq''(z)}{q'(z)} + \frac{(\delta - 1)zq'(z)}{q(z)} + \frac{\beta(\delta + 1)q(z)}{\alpha} + \frac{\gamma\delta}{\alpha} \right] > 0. \end{split}$$

If the analytic function $p,\ p(z) \neq 0,\ z \in \mathbb{E}$, satisfies the differential subordination

(5)
$$\Phi(p(z), zp'(z); z) \prec \Phi(q(z), zq'(z); z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$ and Φ is given by (4), then $p(z) \prec q(z)$ and q is the best dominant.

Proof. Let us define the functions θ and ϕ as follows:

$$\theta(w) = (\beta w + \gamma)w^{\delta},$$

and

$$\phi(w) = \alpha w^{\delta - 1}.$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\phi(w) \neq 0, \ w \in \mathbb{D}$.

Define the functions Q_1 and h as follows:

$$Q_1(z) = zq'(z)\phi(q(z)) = \alpha zq'(z)(q(z))^{\delta-1},$$

and

$$h(z) = \theta(q(z)) + Q_1(z) = \Phi(q(z), zq'(z); z).$$

A little calculation yields

$$\frac{zQ_1'(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} + \frac{(\delta - 1)zq'(z)}{q(z)},$$

and

$$\frac{zh'(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} + \frac{(\delta - 1)zq'(z)}{q(z)} + \frac{\beta(\delta + 1)q(z)}{\alpha} + \frac{\gamma\delta}{\alpha}.$$

In view of conditions (i) and (ii), we get

(1) Q_1 is starlike in \mathbb{E} and

(2)
$$\Re \frac{zh'(z)}{Q_1(z)} > 0, \ z \in \mathbb{E}.$$

Thus conditions (ii) and (iii) of Lemma 1, are satisfied.

In view of (5), we have

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)].$$

Therefore, the proof, now, follows from Lemma 1.

Theorem 2 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} such that

If $p \in \mathcal{H}[q(0),1] \cap Q$, with $p(z) \neq 0$, $z \in \mathbb{E}$, satisfies the differential superordination

(6)
$$\Phi(q(z), zq'(z); z) \prec \Phi(p(z), zp'(z); z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$, $\Phi(p(z), zp'(z); z)$ is univalent in \mathbb{E} and Φ is given by (4), then $q(z) \prec p(z)$ and q is the best subordinant.

Proof. Let us define the functions θ and ϕ as follows:

$$\theta(w) = (\beta w + \gamma)w^{\delta},$$

and

$$\phi(w) = \alpha w^{\delta - 1}.$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\phi(w) \neq 0, \ w \in \mathbb{D}$.

Let us define the functions Q_1 and h as follows:

$$Q_1(z) = zq'(z)\phi(q(z)) = \alpha zq'(z)(q(z))^{\delta-1},$$

and

$$h(z) = \theta(q(z)) + Q_1(z) = \Phi(q(z), zq'(z); z).$$

A little calculation yields

$$\frac{zQ_1'(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} + \frac{(\delta - 1)zq'(z)}{q(z)},$$

and

$$\frac{\theta'(q(z))}{\phi(q(z))} = \frac{\beta(\delta+1)q(z)}{\alpha} + \frac{\gamma\delta}{\alpha}.$$

In view of conditions (i) and (ii), we have

- (1) Q_1 is starlike in \mathbb{E} and
- (2) $\Re \frac{\theta'(q(z))}{\phi(q(z))} > 0, \ z \in \mathbb{E}.$

Thus by (6), we obtain

$$\theta[q(z)] + zq'(z)\phi[q(z)] \prec \theta[p(z)] + zp'(z)\phi[p(z)].$$

Therefore, the proof, now, follows from Lemma 2.

4 Applications to Univalent Functions

On writing $p(z) = \frac{(f*\phi)(z)}{(f*\psi)(z)}$, in Theorem 1, we have the following result.

Theorem 3 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 1. If $f \in \mathcal{A}$ and analytic functions ϕ , ψ with $\frac{(f*\phi)(z)}{(f*\psi)(z)} \neq 0$, $z \in \mathbb{E}$, satisfy the differential subordination

$$\Phi\left[\frac{(f*\phi)(z)}{(f*\psi)(z)}, z\left(\frac{(f*\phi)(z)}{(f*\psi)(z)}\right)'; z\right] \prec \Phi(q(z), zq'(z); z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$ and Φ is given by (4), then

$$\frac{(f * \phi)(z)}{(f * \psi)(z)} \prec q(z),$$

and q is the best dominant.

On writing $p(z) = \frac{(f*\phi)(z)}{(f*\psi)(z)}$, in Theorem 2, we have the following result.

Theorem 4 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 2. If $f \in \mathcal{A}$ and analytic functions ϕ , ψ such that $\frac{(f*\phi)(z)}{(f*\psi)(z)} \in \mathcal{H}[q(0),1] \cap Q$, with $\frac{(f*\phi)(z)}{(f*\psi)(z)} \neq 0$, $z \in \mathbb{E}$, satisfy the differential superordination

$$\Phi(q(z), zq'(z); z) \prec \Phi\left[\frac{(f * \phi)(z)}{(f * \psi)(z)}, z\left(\frac{(f * \phi)(z)}{(f * \psi)(z)}\right)'; z\right] = h(z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$, h is univalent in \mathbb{E} and Φ is given by (4), then

$$q(z) \prec \frac{(f * \phi)(z)}{(f * \psi)(z)},$$

and q is the best subordinant.

Remark 1 On selecting the particular values of α , β , γ and δ in Theorem 1 and Theorem 3 and by considering the particular cases of functions ϕ and ψ

in case of Theorem 3, we can obtain a number of known results and some of them are given below.

- (i) On writing $\gamma = 1 \beta, \delta = 1$ in Theorem 1, we obtain, Lemma 1 of [12].
- (ii) On replacing $\gamma=1$ and $\beta=0$ in Theorem 1, we obtain, Corollary 3.2 of [21].
- (iii) By taking $\alpha = \delta = 1$ and $\gamma = 0$ in Theorem 1, we obtain, Corollary 3.4 of [22].
- (iv) By taking $\alpha = \delta = 2, \beta = 0$ and $\gamma = 1$ in Theorem 1, we obtain, Corollary 3.3 of [21] (see also [6], page 77).
- (v) By taking $\beta = 0$ and $\gamma = \delta = 1$ in Theorem 1, we obtain, Corollary 3.4 of [21].
- (vi) By taking $\alpha = 1$, $\beta = \gamma = 0$ and $\delta = -1$ in Theorem 1, we have the result of Ravichandran and Darus [15].
- (vii) By taking $\alpha = \gamma = 1$, $\beta = 0$ and $\delta = \frac{1}{\lambda}$ in Theorem 1, we obtain, Lemma 1 of [13].
- (viii) By taking $\phi(z) = \sum_{n=1}^{\infty} nz^n$, $\psi(z) = \sum_{n=1}^{\infty} z^n$, $\beta = \alpha$, $\gamma = 1 \alpha$ and $\delta = 1$ in Theorem 3, we obtain the Theorem 3 of [12].
- (ix) By taking $\phi(z) = \sum_{n=1}^{\infty} nz^n$, $\psi(z) = \sum_{n=1}^{\infty} z^n$, $\beta = 1$ and $\gamma = \delta = 0$ in Theorem 3, we obtain, Theorem 4.3 of [22].
- (x) By taking $\phi(z) = \sum_{n=1}^{\infty} nz^n$, $\psi(z) = \sum_{n=1}^{\infty} z^n$, $\alpha = \beta = 1, \gamma = 0$ and $\delta = -1$ in Theorem 3, we obtain, Theorem 4.5 of [22].

Remark 2 By making the selections same as in Remark 1, in Theorem 2 and Theorem 4, we can obtain the corresponding results for superordination. e.g.

- (i) For $\delta = 1$ in Theorem 2, we obtain Lemma 2.1 of [17].
- (ii) On writing $\gamma = \delta = 0$ in Theorem 2, we obtain Lemma 2.4 of [17]

- (iii) By taking $\phi(z) = \sum_{n=1}^{\infty} nz^n$, $\psi(z) = \sum_{n=1}^{\infty} z^n$, $\alpha = \beta$, $\gamma = 1 \beta$ and $\delta = 1$ in Theorem 4, we obtain, Theorem 2.2 of [17].
- (iv) By taking $\phi(z) = \sum_{n=1}^{\infty} nz^n$, $\psi(z) = \sum_{n=1}^{\infty} z^n$, $\beta = 1$ and $\gamma = \delta = 0$ in Theorem 4, we obtain, Theorem 2.5 of [17].

5 Applications to Multivalent Functions

Let $\mathcal{A}(\mathcal{P})$ denote the class of functions of the form $f(z) = z^{\mathcal{P}} + \sum_{k=1}^{\infty} a_{\mathcal{P}+k} z^{\mathcal{P}+k}$, $(\mathcal{P} \in \mathbb{N} = \{1, 2, 3, \dots\})$, which are analytic and \mathcal{P} -valent in \mathbb{E} . On writing $p(z) = \frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)}$, in Theorem 1, we have the following result.

Theorem 5 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} , which satisfy the conditions (i) and (ii) of Theorem 1. If $f \in \mathcal{A}(\mathcal{P})$, with $\frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$\Phi\left[\frac{1}{\mathcal{P}}\frac{zf'(z)}{f(z)}, z\left(\frac{1}{\mathcal{P}}\frac{zf'(z)}{f(z)}\right)'; z\right] \prec \Phi(q(z), zq'(z); z),$$

where α, β, γ and δ are complex numbers with that $\alpha \neq 0$ and Φ is given by (4), then $\frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)} \prec q(z)$ and q is the best dominant.

On writing $p(z) = \frac{1}{p} \frac{z f'(z)}{f(z)}$, in Theorem 2, we have the following result.

Theorem 6 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} , which satisfy the conditions (i) and (ii) of Theorem 2. If $f \in \mathcal{A}(\mathcal{P}), \frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)} \in \mathcal{H}[q(0), 1] \cap Q$, with $\frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential superordination

$$\Phi(q(z), zq'(z); z) \prec \Phi\left[\frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)}, z\left(\frac{1}{\mathcal{P}} \frac{zf'(z)}{f(z)}\right)'; z\right] = h(z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$, h is univalent in \mathbb{E} and Φ is given by (4), then $q(z) \prec p(z)$ and q is the best subordinant.

Remark 3 We can obtain interesting results for \mathcal{P} -valent functions by selecting the particular values α , β , γ and δ in Theorem 5.

e.g. For $\beta = \mathcal{P}, \ \gamma = 0$ and $\delta = 0$ in Theorem 5, we obtain Theorem 1 of [25].

Also note that for the same selection in Theorem 6, we can obtain the corresponding result for superordination.

6 Applications to ϕ -like Functions

On writing $p(z) = \frac{z(f*g)'(z)}{\phi((f*g)(z))}$, in Theorem 1, we obtain the following result.

Theorem 7 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 1. If $f, g \in \mathcal{A}$ such that $\frac{z(f*g)'(z)}{\phi((f*g)(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$\Phi\left[\frac{z(f*g)'(z)}{\phi((f*g)(z))}, z\left(\frac{z(f*g)'(z)}{\phi((f*g)(z))}\right)'; z\right] \prec \Phi(q(z), zq'(z); z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$, ϕ is an analytic function in domain containing $(f * g)(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in (f * g)(\mathbb{E}) \setminus \{0\}$ and Φ is given by (4), then

$$\frac{z(f*g)'(z)}{\phi((f*g)(z))} \prec q(z),$$

and q is the best dominant.

On writing $p(z) = \frac{z(f*g)'(z)}{\phi((f*g)(z))}$, in Theorem 2, we have the following result.

Theorem 8 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 2. If $f, g \in \mathcal{A}$ such that $\frac{z(f*g)'(z)}{\phi((f*g)(z))} \in$

 $\mathcal{H}[q(0),1] \cap Q$, with $\frac{z(f*g)'(z)}{\phi((f*g)(z))} \neq 0$, $z \in \mathbb{E}$, satisfy the differential superordination

$$\Phi(q(z),zq'(z);z) \prec \Phi\left[\frac{z(f*g)'(z)}{\phi((f*g)(z))},z\left(\frac{z(f*g)'(z)}{\phi((f*g)(z))}\right)';z\right] = h(z),$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$, h is univalent in \mathbb{E} , ϕ is an analytic function in domain containing $(f * g)(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in (f * g)(\mathbb{E}) \setminus \{0\}$ and Φ is given by (4), then

$$q(z) \prec \frac{z(f*g)'(z)}{\phi((f*g)(z))},$$

and q is the best subordinant.

Remark 4 On putting $\gamma = 0$ and $\delta = 0$ in Theorem 7, we obtain Theorem 2.1 of [19] and by the same selection in Theorem 8, we obtain Theorem 2.5 of [19].

Remark 5 If we select $g(z) = \sum_{n=1}^{\infty} z^n$ in Theorem 7 and Theorem 8, then for $f \in \mathcal{A}$, we have

$$\frac{z(f*g)'(z)}{\phi(f*g)(z)} = \frac{zf'(z)}{\phi(f(z))}.$$

Now the applications of Theorem 7 and Theorem 8, can be seen by giving different values to α , β , γ and δ . By doing so, we obtain the results of ([4],[13],[24]). e.g.

- (i) On writing $g(z) = \sum_{n=1}^{\infty} z^n$, $\alpha = \beta$, $\gamma = 1 \beta$ and $\delta = 1$ in Theorem 7, we obtain, Theorem 3 of [13].
- (ii) On writing $g(z) = \sum_{n=1}^{\infty} z^n$, $\alpha = \gamma = 1$, $\beta = 0$ and $\delta = \frac{1}{\lambda}$ in Theorem 7, we obtain, Theorem 4 of [13].

References

- [1] L. Brickman, ϕ -like analytic functions. I, Bull. Amer. Math. Soc., **79**, 1973, 555-558.
- [2] T. Bulboaca, Classes of First-Order Differential Superordinations, Demonstratio Math., **35**(2), 2002, 287-292.
- [3] T. Bulboaca, T.Tuneski, New Criteria for Starlikeness and Strongly Starlikeness, Mathematica (Cluj), 43(66), 2001, 1, 11-22.
- [4] N. E. Cho, J. Kim, On a Sufficient Condition and an Angular Estimation for φ-like Functions, Taiwan. J. Math., 2(4), 1998, 397-403.
- [5] J. L. Li, S. Owa, Sufficient conditions for starlikeness, Indian J. pure appl. Math., **33**(3), 2002, 313-318.
- [6] S. S. Miller, P.T. Mocanu, Differential Suordinations: Theory and Applications, Series on monographs and textbooks in pure and applied mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
- [7] S. S. Miller, P. T. Mocanu, Differential subordination and Univalent functions, Michigan Math. J. 28, 1981, 157-171.
- [8] M. Obradovic, N. Tuneski, On the Starlike Criteria Defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej. Mat., 181(24), 2000, 59-64.
- [9] M. Obradovic, S. B. Joshi, I. Jovanovic, On Certain sufficient Conditions for Starlikeness and Convexity, Indian J. pure appl. Math., 29(3), 1998, 271-275.
- [10] K. S. Padmanabhan, On Sufficient conditions for starlikeness, Indian J. pure appl. Math., 32(4), 2001, 543-550.

- [11] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Götingen, 1975.
- [12] V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci., 12(1), 2004, 41-51.
- [13] V. Ravichandran, N. Magesh, R. Rajalakshmi, On Certain Applications of Differential Subordinations for φ-like Functions, Tamkang J. Math., 36(2), 2005, 137-142.
- [14] V. Ravichandran, C. Selvaraj, R. Rajalaksmi, Sufficient Conditions for Starlike Functions of Order α , J. Inequal. Pure and Appl. Math. **3**(5), 2002, 81, 1-6.
- [15] V. Ravichandran, M. Darus, On a criteria for starlikeness, International Math. J., 4(2), 2003, 119-125.
- [16] M. S. Robertson, Certain classes of starlike functions, Michigan Math.J., 32, 1985, 135-140.
- [17] M. Ali Rosihan , V. Ravichandran, M. Hussain Khan, K. G. Subramanian, Differential Sandwich Theorems for Certain Analytic Functions, Far East J. Math. Sci. 15(1), 2004, 87-94.
- [18] St. Ruscheweyh, A subordination theorem for ϕ -like functions, J. London Math. Soc., $\mathbf{2}(13)$, 1976, 275-280.
- [19] T. N. Shanmugam, S. Sivasubramanian, M. Darus, Subordination and Superordination Results for φ-like Functions, J. Inequal. Pure and Appl. Math., 8, 2007, 1, 1-6.

- [20] H. Silverman, Convex and starlike criteria, Internat. J. Math. Sci. & Math. Sci., 22(1), 1999, 75-79.
- [21] S. Singh, S. Gupta, On Certain Differential Subordination and its Dominants, Bull. Belg. Math. Soc. 12, 2005, 259-274.
- [22] S. Singh, S. Gupta, Some Applications of a First Order Differential Subordination, J. Inequal. Pure and Appl. Math. 5(3), 2004, 78, 1-15.
- [23] V. Singh, N. Tuneski, On a Criteria for Starlikeness and Convexity of Analytic Functions, Acta Mathematica Scientia, 24, 2004, 597-602.
- [24] V. Singh, On some criteria for univalence and starlikeness, Indian J. Pure. Appl. Math. 34(4), 2003, 569-577.
- [25] H. M. Srivastava, A. A. Attiya, Some applications of differential subordination, Appl. Math. Letters, **20**, 2007, 1142-1147.
- [26] N. Tuneski, On the quotient of the representations of convexity and star-likeness, *Math. Nachr.*, **248-249**(1), 2003, 200-203.
- [27] N. Tuneski, On a criteria for starlikeness of analytic functions, Integral Transforms and Special Functions, 14(3), 2003, 263-270.
- [28] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. & Math. Sci., 23(8), 2000, 521-527.
- [29] N. Tuneski, On Some Simple Sufficient Conditions for Univalence, Mathematica Bohemica, **126**(1), 2001, 229-236.

Sukhwinder Singh

Deaprtment of Applied Sciences

Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib-140 407 (Punjab) India
e-mail: ss_billing@yahoo.co.in

Sushma Gupta and Sukhjit Singh

Department of Mathematics
Sant Longowal Institute of Engineering & Technology
Longowal-148 106 (Punjab) India
e-mail: sushmagupta1@yahoo.com, sukhjit_d@yahoo.com