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Starlikeness of analytic maps satisfying a
differential inequality !’
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Abstract

In the present note, the authors present a criterion for starlikeness of
analytic maps satisfying a differential inequality in the open unit disc E =
{#z : |z| < 1} and claim that their result unifies a number of previously

known results in this direction.
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1 Introduction

Let A be the class of functions f, analytic in E = {z : |2| < 1} and normalized
by the conditions f(0) = f/(0) — 1 = 0. Denote by S*(«), the class of starlike
functions of order «, which is analytically defined as follows:

S*(a) = {feA:S%ZJ{éS) >a,zeE},

where « is a real number such that 0 < o < 1.
We write S* = S*(0). Therefore S* is the class of univalent starlike func-

tions (w.r.t. the origin).
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Obtaining different criteria for starlikeness of an analytic function has al-
ways been a subject of interest e.g. Miller, Mocanu and Reade [5] studied the
class of a-convex functions and proved that if a function f € A satisfies the
differential inequality

R [(1 - a)ZJJ:;S) +a <1 + z;,/gz)ﬂ >0,z ¢k,

where « is any real number, then f is starlike in E. Lewandowski et al.[2]

proved that for a function f € A, the differential inequality
R[22
f(z) f'(z)
ensures membership for f in the class S*. For more such results, we refer the
reader to (3], [6], [7] and [8].
In the present paper, we generalize these sufficient conditions and obtain

]>O,ZEIE,

an interesting criterion for starlikeness. In Section 4, we show that some well-
known results follow as corollaries to our result.

2 Preliminaries

We shall need the following lemma of Miller and Mocanu [4] to prove our
result.

Lemma 1 Let Q be a set in the complex plane C and let ¢ : C2 xE — C. For
u = uy+iug, v ="v1+ivy, assume that ¥ satisfies the condition ¥ (iug,v1;2) ¢
Q, for all ug,v1 € R, with vy < —(1+u3)/2 and for all z € E. If the function
p, p(2) = 1+ p1z + paz? + ..., is analytic in E and if ¥(p(z), 2p'(2); 2) € Q,
then R p(z) > 0 in E.

3 Main Theorem

Theorem 2 Let a, a > 0, \,0 < A < 1, and 3,0 < 8 < 1, be given real
numbers.

(i) For 1/2 < X< 1, if a function f € A, f(zz) # 0 in E, satisfies
(1)

() (-5 (- FED] e
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then f € S*(\).

(ii) For 0 < XA < 1/2, let a function f € A, %Z) # 0 in E, satisfy

(a)

R[22 (10 220 (1 2) (129
:” BA =1 =373 +2)7) + (3 - 20)A° >0,

>

S22 (1 20 s (1) (14 5] v
Z’;” BA—1-3) +2)1) + (3 -20)\° <0.

Then f € S*(\). Here

(6) M(a,5,2) = [1—a(1— ) +a(1—gp2— 2L =AA =N _afl =)

2 22
and
N(o B A) = [1 — a(l — A)A + a(l — a2 — L= 52)(1 -
(7) N
~o oy 2VAAL 201 = )3~ 20 +5A =N (1-F)(3-21)].

Proof. Define a function p by

2f'(2)
f(2)

Then p is analytic in E and p(0) = 1. A simple calculation yields

(8)

= A+ (1—XN)p(z).
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Fi5t (L4 o?) +as (1= 8 (1+ 575

=1 —a+af)A+1-Np(2)]+al =B+ (1 - Np(2)]?

(1 —A)zp'(2)

Tl =0)(1 = N2p'(2) + afi a5 0

(9) = ¢(p(2), 20 (2); 2)
where,
P(u,v;2) = (1 —a+af) A+ (1= Nu] + a(l = B)A + (1 - Aul?

+a(l=B)(1 = ANv+ aﬁ%

Let v = uy + tug, v = vy + tvo, where ui,us,v1,ve are all real with v; <
—(1 + u3)/2. Then, we have

R Y (iug,v1; 2)

= (l-a+af)r+a(l - -1 -N%d+

ol B)(1— Aoy + aﬁ)\z)\(l — Ny

+ (1 —X\)2u3

IN

(1—a+aB)r+a(l —B)A — (1 — N3] +
Ca(1=-8)0 =M1 +u3)
2

= (1—a+aﬂ)>\+a(1—6))\2—a(1@(1)‘)_
A=A u3
oy (% ) A) - O‘ﬁ2<il T (1)(_1 1)25%

= (1—a+a6))\+a(1—5))\2—a(l_@(l_)‘) -

3 M1 =1
ey <5 B A) " 0‘52(; T (1)(_1)32)

AL = N1+ ud)
21 (1 - N)2d)

aﬂQ

= ¢(t) (say), where ul =t
(10K max¢(t).
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Writing
(1—a+aB)r+a(l - B)A\* - al _52)(1 —N _ a,
(-9 - (3 -2) =t
and % = ¢, we have

Be (141
¢(t):a—abt—%(62+t>.

Clearly, ¢(t) is continuous at ¢ = 0. A simple calculation gives
21
) = —ap P L
o) = —ab= =\ @5

Case (i). When 1/2 < XA < 1, then ¢ = % > 1. Sincea >0, 0 <3 <1,
therefore, b > 0. Hence, ¢'(t) < 0 which implies that ¢ is a decreasing function
of t (>0). Thus

max ¢(t) = ¢(0)
(11) = M(a, B3, \).

Let
Q={w: Rw>M(a,5,\)}.

Then from (1) and (9), we have ¢(p(z),2p'(z);2) € Q for all z € E, but
Y(iug,v1;2) ¢ Q, in view of (10) and (11). Therefore, by Lemma 1 and (8),
we conclude that f € S*(A).

Case (ii). When 0 < X < 1/2, we get ¢ = 125 < 1. Now, ¢/(t) = 0 implies

which gives

Writing —c? — A/ %gcz) =t; and —c? + \/ %202) = t9, we observe that

t1 < 0 and also, t1 < to.
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Subcase (i). When t9 < 0, i.e. when (3) holds true. In that case ¢; and ¢
both are negative. (Here, ¢ is positive.) It can be easily verified that

ORS

«

s@ et —t) <0.

Thus ¢ is a decreasing function of ¢ and again

max ¢(t) = ¢(0)
(12) = M(a,B,\).

Proceeding as in case (i), we obtain the required result.
Subcase (ii). When to > 0, i.e. when (5) holds true. In that case, ¢ is a
increasing function of ¢,¢ > 0, and therefore,

max ¢(t) = é(ta)
(13) = N(a,[B,N).

Q={w: Rw> N(a,5,\)}.

Then from (4) and (9), we have (p(z),2p'(2);2) € Q for all z € E, but
P (iug, v1;2) ¢ Q, in view of (10) and (13). Result now follows by Lemma 1.

4 Applications to Univalent Functions

In this section, we apply Theorem 2 and obtain certain well-known criteria for
starlikeness of an analytic function.

Writing 8 = 1 in Theorem 2, we obtain the following result of Fukui [1]
for the class of a-convex functions.

Corollary 3 Let a, a > 0 be a given real number. For all z € E, let a
function f € A satisfy

R (1_Q)M+a<1+zf”(z)>]{ > A= 5y, 0 A< 1/2,

f(2) f'(z) >a-l A <t
Then f € S*(X).

The case, when we write 3 = 0 in Theorem 2, gives the following result of
Ravichandran et al. [9].
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Corollary 4 Let o, a > 0 be a given real number. For a real number \,0 <
A <1, and for all z € E, let a function f € A satisfy

([ o] o)t

Then f € S*()).

Setting 8 =0 and A = «/2,0 < a < 2 in Theorem 2, we obtain the following
result of Li and Owa [3].

Corollary 5 If a function f € A satisfies

2f'(z) 22 f"(2) o’

R +« >-——1-a), 0<a<?2,

f(2) f(2) 4
then f € S*(a/2).

Setting # = o = 1 in Theorem 2, we obtain the following result.

Corollary 6 For all z € E, let f in A satisfy the condition

A
%(1+Zf”(z)>{ >>\—m,OSA<1/2,

f'(z) >a-LA 1p<a <

Then f € S*()).
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