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The family of indefinite binary quadratic forms and
elliptic curves over finite fields 1

Arzu Özkoç, Ahmet Tekcan

Abstract

In this paper, we consider some properties of the family of indefinite
binary quadratic forms and elliptic curves. In the first section, we give
some preliminaries from binary quadratic forms and elliptic curves. In
the second section, we define a special family of indefinite forms Fi and
then we obtain some properties of these forms. In the third section, we
consider the number of rational points on conics CFi over finite fields.
In the last section, we consider the number of rational points on elliptic
curves EFi over finite fields, also we give some formulas for the sum of
x−and y−coordinates of rational points (x, y) on EFi .
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1 Preliminaries

A real binary quadratic form (or just a form) F is a polynomial in two variables
x and y of the type

(1) F = F (x, y) = ax2 + bxy + cy2
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4 A. Özkoç, A. Tekcan

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrim-
inant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ).
F is an integral form if and only if a, b, c ∈ Z, and is indefinite if and only if
∆(F ) > 0. An indefinite definite form F = (a, b, c) of discriminant ∆ is said
to be reduced if

∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆. A principal form F of discriminant

∆ is a form given by

(2) F (x, y) =

{
x2 − ∆

4 y2 if ∆ ≡ 0(mod 4)
x2 + xy − ∆−1

4 y2 if ∆ ≡ 1(mod 4).

Note that principal forms are always reduced. Most properties of quadratic
forms can be giving by the aid of extended modular group Γ ([13]). Gauss
(1777-1855) defined the group action of Γ on the set of forms as follows:

gF (x, y) =
(
ar2 + brs + cs2

)
x2 + (2art + bru + bts + 2csu) xy(3)

+
(
at2 + btu + cu2

)
y2

for g =

(
r s

t u

)
= [r; s; t;u] ∈ Γ, that is, gF is gotten from F by making

the substitution x → rx + tu and y → sx + uy. Moreover, ∆(F ) = ∆(gF ) for
all g ∈ Γ, that is, the action of Γ on forms leaves the discriminant invariant.
If F is indefinite or integral, then so is gF for all g ∈ Γ. Let F and G be two
forms. If there exists a g ∈ Γ such that gF = G, then F and G are called
equivalent. If detg = 1, then F and G are called properly equivalent and if
detg = −1, then F and G are called improperly equivalent. An element g ∈ Γ

is called an automorphism of F if gF = F . If det g = 1, then g is called a
proper automorphism of F , and if det g = −1, then g is called an improper
automorphism of F . Let Aut(F )+ denote the set of proper automorphisms
of F and let Aut(F )− denote the set of improper automorphisms of F . Let
F = (a, b, c) be an indefinite form and let Φ = {[1; s; 0; 1] : s ∈ Z} . Then Φ is a
cyclic subgroup of SL(2,Z) which is generated by g = [1; 1; 0; 1]. Now we want
to determine the element in the Φ−orbit of F for which the absolute value of
xy is minimal. For s ∈ Z, we have gsF = (a, b + 2sa, as2 + bs + c). Hence the
coefficient of x2 of any form in the Φ−orbit of F is a and the coefficient of
xy of such a form is uniquely determined (mod 2a). If we choose s =

⌊
a−b
2a

⌋
,

then we have −a < b+2sa ≤ a. This choice of s minimizes the absolute value
of b. Further, the coefficient of y2 in gsF is (2as+b)2+|∆|

4a . So this choice of
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s minimizes this coefficient. Hence the form F = (a, b, c) is called normal if
−|a| < b ≤ |a| for |a| ≥ √

∆ or
√

∆− 2|a| < b <
√

∆ for |a| < √
∆. We see as

above that, the Φ−orbit of F contains one normal form which can be obtained
as gsF with s =

⌊
a−b
2a

⌋
. The normal form in the Φ−orbit of F is called the

normalization of F , which means replacing F by its normalization (see [2]).
Let ρ(F ) denote the normalization of (c,−b, a). Let F = F0 = (a0, b0, c0) and
let

(4) si =





sign(ci)
⌊

bi
2|ci|

⌋
for |ci| ≥

√
∆

sign(ci)
⌊

bi+
√

∆
2|ci|

⌋
for |ci| <

√
∆

for i ≥ 0. Then the reduction of F is

(5) ρi+1(F ) = (ci,−bi + 2cisi, cis
2
i − bisi + ai)

for i ≥ 0. Then ρ is called the reduction operator for indefinite binary
quadratic forms (for further details on binary quadratic forms see [2, 3, 4]).

2 The family of indefinite binary quadratic forms

In [17], we defined a special family of positive definite binary quadratic forms,
and then obtained some properties of these forms and also quadratic congru-
ences and singular curves related to these forms. In the present paper, we will
define a family of indefinite binary quadratic forms of the type F = (1, b, c) of
discriminant ∆ and then obtained some properties of these forms. Later, we
will consider the number of rational points on conics and elliptic curves related
to these forms. First we define the family of indefinite quadratic forms.

Theorem 1 If ∆ ≡ 1(mod 4), say ∆ = 1 + 4k for a positive integer k ≥ 1,
then there exist k−indefinite binary quadratic forms of the type

(6) Fi = (1, 2i + 1, i2 + i− k), 1 ≤ i ≤ k

of discriminant ∆.

Proof. Let ∆ ≡ 1(mod 4), say ∆ = 1+4k. Then ∆ is odd. Let Fi = (1, bi, ci)
be a given form of discriminant ∆. Since ∆ is odd, the coefficient bi must be
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odd. Let bi = 2i + 1 for an integer i ≥ 1. Then

ci =
b2
i −∆

4
=

(2i + 1)2 − (1 + 4k)
4

= i2 + i− k.

Note that i must be i ≤ k. Therefore, there are k-indefinite binary quadratic
forms Fi = (1, 2i + 1, i2 + i− k) of discriminant ∆.

Let = denote the family of indefinite binary quadratic forms Fi defined in
(6), that is,

(7) = =
{
Fi : Fi = (1, 2i + 1, i2 + i− k), 1 ≤ i ≤ k

}
.

From now on we assume that Fi is indefinite and ∆ ≡ 1(mod 4) is a positive
non-square discriminant throughout the paper. Now we consider the reduction
of Fi. Set

A1 = {3, 4, 5}
A2 = {7, 8, 9, 10, 11}
A3 = {13, 14, 15, 16, 17, 18, 19}

· · ·
Ai =

{
i2 + i + 1, i2 + i + 2, · · · , i2 + 3i, i2 + 3i + 1

}
(8)

for a non-negative integer i. Then s(Ai) = 2i + 1. If k = i2 + 1 or k = i2

+3i + 2, then ∆ is a square, that is why we disregard these values of i from
Ai. Now we can give the following theorem.

Theorem 2 Let Fi be a form in = of discriminant ∆. Then Fi is reduced if
and only if k ∈ Ai for some i.

Proof. Let us assume that Fi = (1, 2i + 1, i2 + i − k) is reduced. Then∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆ ⇔ ∣∣√1 + 4k − 2

∣∣ < 2i+1 <
√

1 + 4k ⇔ √
1 + 4k−2 <

2i + 1 <
√

1 + 4k since 1 + 4k > 4. Hence we get k < i2 + 3i + 2 from√
1 + 4k − 2 < 2i + 1 and i2 + i < k from 2i + 1 <

√
1 + 4k. Therefore

i2 + i < k < i2 + 3i + 2, that is, k ∈ (i2 + i, i2 + i + 2). So k ∈ Ai.
Let k ∈ Ai. Then i2 + i < k < i2 +3i+2, and hence

√
1 + 4k−2 < 2i+1 <√

1 + 4k ⇔
∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆, that is, Fi is reduced.
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We proved in above theorem that the form Fi is reduced if and only if
k ∈ Ai. For the other values of i, the forms Fi are not reduced. Therefore
there exist exactly one reduced form for each given discriminant ∆. Now we
consider the reduction of non-reduced forms by using the reduction algorithm
as we mentioned in the previous section. Let Fj = (1, 2j, j2 + j − k) be
a reduced form. Then k ∈ Aj . Let Fi = Fi0 = (1, 2i, i2 + i − k) be any
non reduced form for i 6= j. Then by (4), we get s0 = 0 and hence by (5),
ρ1(Fi) = (i2 + i−k,−2i, 1). But ρ1(Fi) is not reduced since −2i is negative. If
we apply the reduction algorithm to ρ1(Fi) again, then we find that s1 = j− i

and hence ρ2(Fi) = (1, 2j, j2 + i− k). This form is reduced. So the reduction
type of Fi is ρ2(Fi) = (1, 2j, j2 + i−k). In fact, ρ2(Fi) = Fj . Hence we proved
the following theorem.

Theorem 3 The reduction type of Fi is ρ2(Fi) = (1, 2j, j2 + i− k).

Example 1 Let ∆ = 53. Then k = 13 ∈ A3. So F3 = (1, 7,−1) is reduced.
Non-reduced forms and their reduced types are giving in the following table:

Table 1: Reduction of Fi

i Fi s0 ρ1(Fi) s1 ρ2(Fi)
1 (1, 3,−11) 0 (−11,−3, 1) 2 (1, 7,−1)
2 (1, 5,−7) 0 (−7,−5, 1) 1 (1, 7,−1)
3 (1,7,−1)
4 (1, 9, 7) 0 (7,−9, 1) −1 (1, 7,−1)
5 (1, 11, 17) 0 (17,−11, 1) −2 (1, 7,−1)
6 (1, 13, 29) 0 (29,−13, 1) −3 (1, 7,−1)
7 (1, 15, 43) 0 (43,−15, 1) −4 (1, 7,−1)
8 (1, 17, 59) 0 (59,−17, 1) −5 (1, 7,−1)
9 (1, 19, 77) 0 (77,−19, 1) −6 (1, 7,−1)
10 (1, 21, 97) 0 (97,−21, 1) −7 (1, 7,−1)
11 (1, 23, 119) 0 (119,−23, 1) −8 (1, 7,−1)
12 (1, 25, 143) 0 (143,−25, 1) −9 (1, 7,−1)
13 (1, 27, 169) 0 (169,−27, 1) −10 (1, 7,−1)

Now we consider the transforming of Fi into principal forms. Since ∆(Fi) ≡
1(mod 4), the principal form of discriminant ∆ is

(9) F =
(

1, 1,
1−∆

4

)
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by (2). Now we can give the following theorem.

Theorem 4 Let Fi be the form defined in (6) and let F be the principal form
defined in (9). Then there exists a g ∈ Γ such that gFi = F , that is, the form
Fi can be transformed into the principal form F .

Proof. Let Fi = (1, 2i+1, i2 + i−k) and let g = [r; s; t; u] ∈ Γ. Then we have
the following system of equations:

r2 + (2i + 1)rs + (i2 + i− k)s2 = 1

2rt + (2i + 1)ru + (2i + 1)ts + 2(i2 + i− k)su = 1

t2 + (2i + 1)tu + (i2 + i− k)u2 =
1−∆

4
.

It is easily seen that this system of equations has a solution for r = 1, s = 0,
t = −i and u = 1 or r = −1, s = 0, t = i and u = −1, that is, gFi = F for
g = ±[1; 0;−i; 1] ∈ Γ. So Fi can be transformed into the principal form.

Now we consider the proper and improper automorphisms of indefinite
forms Fi.

Theorem 5 Let Fi be the form defined in (6). Then

#Aut(Fi)+ =





10 if p = 5
6 if p = 12 and i = 1, 2
2 otherwise

and

#Aut(Fi)− =





10 if p = 5

4





if p = 13
if p = 29 and i = 1, 2, 3, 4
if p = 37 and i = 3
if p = 53 and i = 2, 3, 4, 5

2 otherwise.

Proof. First we consider the proper automorphisms. Let p = 5. Then
F1 = (1, 3, 1). Let g = [r, s, t, u] ∈ Γ. Then we have the following system of
equations:

r2 + 3rs + s2 = 1

2rt + 3ru + 3ts + 2su = 3

t2 + 3tu + u2 = 1.
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This system of equations has a solution for g = ±[8,−3, 3,−1],±[3,−1, 1, 0],
±[1, 0, 0, 1], ±[1,−3, 3,−8] and ±[0, 1,−1, 3]. So

Aut(F1)+ =

{
±[8,−3, 3,−1],±[3,−1, 1, 0],±[1, 0, 0, 1],

±[1,−3, 3,−8],±[0, 1,−1, 3]

}
.

Hence #Aut(F1)+ = 10.
For p = 13, Aut(F1)+ = {±[10,−3,−3, 1],±[1, 3, 3, 10],±[1, 0, 0, 1]} and

Aut(F2)+ = {±[13,−3, 9,−2],±[2,−3, 9,−13],±[1, 0, 0, 1]} . For the other val-
ues of p, we have Aut(Fi)+ = {±[1, 0, 0, 1]} for every i.

Now we consider the improper automorphisms. For p = 5, Aut(F1)− =
{±[3,−1, 8,−3],±[3,−8, 1,−3],±[1, 0, 3,−1],±[1,−3, 0,−1],±[0, 1, 1, 0]}.

For p = 13, Aut(F1)− = {±[1, 3, 0,−1],±[1, 0, 3,−1]} , Aut(F2)− = {±
[2,−3, 1, −2],±[1, 0, 5,−1]} and Aut(F3)− = {±[5,−3, 8,−5],±[1, 0, 7,−1]}.

For p = 29, Aut(F1)− = {±[6, 5,−7,−6],±[1, 0, 3,−1]}, Aut(F2)−

= {±[1, 5, 0,−1],±[1, 0, 5,−1]}, Aut(F3)− = {±[4,−5, 3,−4],±[1, 0, 7,−1]},
Aut(F4)− = {±[9,−5, 16,−9],±[1, 0, 9,−1]} .

For p = 37, Aut(F3)− = {±[11,−24, 5,−11],±[1, 0, 7,−1]} and for p =
53, Aut(F2)− = {±[8, 7,−9,−8],±[1, 0, 5,−1]}, Aut(F3)− = {±[1, 7, 0,−1],
±[1, 0, 7,−1]}, Aut(F4)− = {±[6,−7, 5,−6],±[1, 0, 9,−1]} , Aut(F5)− = {±
[13,−7, 24,−13],±[1, 0, 11,−1]}. For other values of p, we have Aut(Fi)− =
{±[1, 0, 2i + 1,−1]} for every i. This completes the proof.

3 From quadratic forms to conics

In the previous section, we define a family of indefinite binary quadratic forms
Fi = (1, 2i + 1, i2 + i − k) of discriminant ∆ ≡ 1(mod 4). In this section, we
will consider the number of rational points on conics CFi related to Fi over
finite fields. Recall that a conic is given by an equation C : a11x

2 +2a12xy +
a22y

2 + 2a13x + 2a23y + a33 = 0 for real numbers aij . Let p ≡ 1(mod 4) be a
prime number and let N ∈ F∗p be a fixed. Let

(10) CFi : x2 + (2i + 1)xy + (i2 + i− k)y2 −N = 0

be a conic over Fp for Fi. Set CFi(Fp) = {(x, y) ∈ Fp×Fp : CFi ≡ N(mod p)}.
Then we have the following result.
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Theorem 6 Let CFi be the conic in (10). Then

#CFi(Fp) =

{
2p if N ∈ Qp

0 if N /∈ Qp,

where Qp denotes the set of quadratic residues.

Proof. We have two cases:
Case 1: Let N ∈ Qp, say N = t2 for t ∈ F∗p. If y = 0, then x2 ≡ t2

(mod p) ⇔ x ≡ ±t(mod p), that is, there are two integer solutions (t, 0) and
(p − t, 0). So there are two rational points (t, 0), (p − t, 0) on CFi . If x = 0,
then (i2 + i − k)y2 ≡ t2(mod p) ⇔ y2 ≡ ± t2

i2+i−k
(mod p) has two solutions

since t2

i2+i−k
is a square mod p. Let m2 = t2

i2+i−k
. Then y2 ≡ m2 (mod p) ⇔

y ≡ ±m(mod p), that is, there are two rational points (0,m) and (0, p −m)
on CFi . Further it is easily seen that if x = h for some h ∈ F∗p, then the
congruence h2 + (2i + 1)hy + (i2 + i− k)y2 ≡ t2(mod p) has a solution y = y1,
and if x = p − h, then the congruence (p − h)2 + (2i + 1)(p − h)y + (i2 +
i − k)y2 ≡ t2(mod p) has a solution y = y2. So we have six rational points
(0,m), (0, p − m), (h, 0), (h, y1), (p − h, 0) and (p − h, y2) on CFi . Set F∗∗p =
Fp−{0, h, p−h}. Then there are p−3 points x in F∗∗p such that the congruence
x2 + (2i + 1)xy + (i2 + i− k)y2 ≡ t2(mod p) has two solutions. Let x = u be a
point in F∗∗p such that the congruence u2+(2i+1)uy+(i2+i−k)y2 ≡ t2(mod p)
has two solutions y = y3 and y = y4. Then there are two rational points (u, y3)
and (u, y4) on CFi , that is, for each point x in F∗∗p such that the congruence
x2 + (2i + 1)xy + (i2 + i− k)y2 ≡ t2(mod p) has two solutions, then there are
two rational points on CFi . Hence there are 2(p− 3) = 2p− 6 rational points.
Consequently there are total 2(p− 3) + 6 = 2p rational points on CFi .

Case 2: Let N /∈ Qp. If y = 0, then x2 ≡ N(mod p) has no solution, and
if x = 0, then (i2 + i− k)y2 ≡ N(mod p) has no solution since N

i2+i−k
is not a

square mod p. Therefore there are no rational point on CFi .

4 From quadratic forms to elliptic curves

In this section, we want to carry out the results we obtained in Section 2 to
the elliptic curves. For this reason, we first give some preliminaries on elliptic
curves. Mordell began his famous paper [11] with the words “Mathematicians
have been familiar with very few questions for so long a period with so little
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accomplished in the way of general results, as that of finding the rational points
on elliptic curves”. The history of elliptic curves is a long one, and exciting
applications for elliptic curves continue to be discovered. Recently, important
and useful applications of elliptic curves have been found for cryptography
[7, 9, 10], for factoring large integers [8], and for primality proving [1, 6]. The
mathematical theory of elliptic curves was also crucial in the proof of Fermat’s
Last Theorem [20].

An elliptic curve E over a finite field Fp is defined by an equation in the
Weierstrass form

(11) E : y2 = x3 + ax2 + bx,

where a, b ∈ Fp and b2(a2 − 4b) 6= 0 with discriminant ∆(E) = 16b2(a2 − 4b).
If ∆(E) = 0, then E is not an elliptic curve, it is a curve of genus 0 (in
fact it is a singular curve). We can view an elliptic curve E as a curve in
projective plane P2, with a homogeneous equation y2z = x3 + ax2z2 + bxz3,
and one point at infinity, namely (0, 1, 0). This point ∞ is the point where
all vertical lines meet. We denote this point by O. The set of rational points
E(Fp) = {(x, y) ∈ Fp × Fp : y2 = x3 + ax2 + bx} ∪ {O} on E is a subgroup of
E. The order of E(Fp), denoted by #E(Fp), is defined as the number of the
points on E and is given by

#E(Fp) = p + 1 +
∑

x∈Fp

(
x3 + ax2 + bx

Fp

)
,

where ( .
Fp

) denotes the Legendre symbol (for the arithmetic of elliptic curves
and rational points on them see [12, 19]).

Now we want to construct a connection between quadratic forms and ellip-
tic curves. For this reason, let F = (a, b, c) be a quadratic form of discriminant
∆(F ) = b2 − 4ac. We define the corresponding elliptic curve EF as

(12) EF : y2 = ax3 + bx2 + cx.

If we take x → x
3√a

in (12), then we obtain

(13) EF : y2 = x3 + ba−2/3x2 + ca−1/3x.

The discriminant of EF is hence ∆(EF ) = 16( c
a)2∆(F ). So we have a corre-

spondence between binary quadratic forms and elliptic curves, that is, we have
the following diagram:
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F = (a, b, c) → EF : y2 = x3 + ba−2/3x2 + ca−1/3x

↓ ↓
∆(F ) → ∆(EF ) = 16( c

a)2∆(F )

In [5, 14, 15, 16, 18], we considered some specific elliptic (also singular)
curves and derived some results concerning them. In this section, we define
a new elliptic curve related to Fi defined in (6). To get this let p be a prime
number such that p ≡ 1(mod 4), say p = 1 + 4k for an integer k ≥ 1. We set
the corresponding elliptic curve as

(14) EFi : y2 = x3 + (2i + 1)x2 + (i2 + i− k)x.

Let EFi(Fp) =
{
(x, y) ∈ Fp × Fp : x3 + (2i + 1)x2 + (i2 + i− k)x

}∪{O}. Then
we can give the following theorem.

Theorem 7 Let EFi be the elliptic curve in (14). If i = 1, then

#EF1(Fp) =

{
p if p ≡ 1, 5(mod 24)
p + 2 if p ≡ 13, 17(mod 24)

and if i = k, then #EFk
(Fp) = p for every prime p.

Proof. Let i = 1. Then F1 = (1, 3, 2 − k) and hence EF1 : y2 = x3 +
3x2 + (2 − k)x. Let p ≡ 1, 5(mod 24). If x = 0, then y2 ≡ 0(mod p) ⇔
y = 0. So (0, 0) is a rational point on EF1 . If y = 0, then x3 + 3x2 + (2 −
k)x ≡ 0(mod p) ⇔ x

(
x2 + 3x + (2− k)

) ≡ 0(mod p). Hence x ≡ 0(mod p)
and x2 + 3x + (2 − k) ≡ 0(mod p). It is easily seen that x = 0 and x =
p−3
2 = 2k− 1 are solutions since (2k− 1)2 + 3(2k− 1) + (2− k) = k(1 + 4k) ≡

0(mod p). So we have two rational points (0, 0) and (p−3
2 , 0) on EF1 . It is easily

seen that p−3
2 ∈ Qp. Let x be a quadratic residue mod p, that is, (x

p ) = 1.

Then
(

x3+3x2+(2−k)x
p

)
=

(
x
p

)(
x− p−3

2
p

)
=

(
x− p−3

2
p

)
. So if x = p−3

2 , then
(

x3+3x2+(2−k)x
p

)
= 0. Hence the quadratic congruence y2 ≡ 0(mod p) has one

solution y = 0 as we mentioned above. If x 6= p−3
2 , then

(
x3+3x2+(2−k)x

p

)
= 1,

that is, x3 + 3x2 + (2− k)x is a square mod p. Let x3 + 3x2 + (2− k)x = u2

for u ∈ F∗p = Fp − {0}. Then y2 ≡ u2(mod p) ⇔ y ≡ ±u(mod p). Hence
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there are two points (x, u) and (x, p − u) on EF1 , that is, for every x, there
are two points. We know that there are p−1

2 − 1 = p−3
2 (we mines 1 from

the number of quadratic residues since x = p−3
2 is a quadratic residue but for

this value of x, there are one solution y, for the other values of x, there are
two solutions y) elements x such that x3 + 3x2 + (2 − k)x a square. Hence
there are 2

(
p−3
2

)
= p − 3 points on EF1 . Adding the point ∞, we get total

p− 3 + 2 + 1 = p points on EF1 .
Similarly it can be shown that if p ≡ 13, 17(mod 24), then there are p + 2

rational points on EF1 and if i = k, then there are p rational points on EFk
.

Remark 1 If i = 1 then for every x /∈ Qp,
(

x3+3x2+(2−k)x
p

)
= −1 for every

prime p ≡ 1, 5(mod 24) and p ≡ 13, 17(mod 24) also if i = k then for
every x /∈ Qp,

(
x3+(2k+1)x2+k2x

p

)
= −1 for every prime p. Note that in above

theorem we only consider the cases i = 1 and i = k. When we consider the
other cases, then we found that there are p + 2 or p rational points on EFi.
But we can not determine for what values of i, EFi has p + 2 and for what
values of i, EFi has p rational points.

Now we consider the sum of x− and y−coordinates of all rational points
(x, y) on EFi over Fp. Set Ex

Fi
(Fp) = {x ∈ Fp : (x, y) ∈ EFi(Fp)} and

Ey
Fi

(Fp) = {y ∈ Fp : (x, y) ∈ EFi(Fp)} and let
∑

[x] E
x
Fi

(Fp) and
∑

[y] E
y
Fi

(Fp)
denote the sum of x− and y−coordinates of all rational points (x, y) on EFi ,
respectively. Then we have following theorems.

Theorem 8 If i = 1, then

∑

[x]

Ex
F1

(Fp) =





(
3p−9

2

)
.x if p ≡ 1, 5(mod 24)

(
3p−5

2

)
.x if p ≡ 13, 17(mod 24)

and if i = k, then ∑

[x]

Ex
Fk

(Fp) =
(

5p− 13
4

)
.x

for every prime p.

Proof. Let i = 1. Then EF1 : y2 = x3 + 3x2 + (2 − k)x. We proved
in Theorem 7 that there are p−3

2 points x such that x3 + 3x2 + (2 − k)x a
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square, that is,
(

x3+3x2+(2−k)x
Fp

)
= 1. Therefore there are two points (x, y)

and (x,−y). Further
(

x3+3x2+(2−k)x
Fp

)
= 0 for x = p−3

2 , that is, there is one

point (p−3
2 , 0) on EF1 . So the sum of x-coordinates of all rational points (x, y)

on EF1 is
[
2

(
p−3
2

)
+ p−3

2

]
.x =

(
3p−9

2

)
.x. Similarly it can be shown that if

p ≡ 13, 17(mod 24), then the sum of x-coordinates of all rational points (x, y)
on EF1 is

(
3p−5

2

)
.x and if i = k, then the sum of x-coordinates of all rational

points (x, y) on EFk
is

(
5p−13

4

)
.x as we claimed.

From above theorem, we can give the following theorem.

Theorem 9 If i = 1, then

∑

[x]

Ex
F1

(Fp) =





p3−7p+18
12 if p ≡ 1, 5(mod 24)

p3+5p−18
12 if p ≡ 13, 17(mod 24)

and if i = k, then ∑

[x]

Ex
Fk

(Fp) =
p3 − 4p + 3

12

for every prime p.

Proof. Let Up = {1, 2, · · · , p − 1} be the set of units in Fp. Then taking
squares of elements in Up, we would obtain the set of quadratic residues Qp ={

1, 4, 9, · · · , (p−1
2 )2

}
. Then the sum of all elements in Qp is 1 + 4 + 9 + · · ·+

(p−1
2 )2 = p(p−1)(p+1)

24 .

Now let i = 1. Then EF1 : y2 = x3 + 3x2 + (2− k)x. Let p ≡ 1, 5(mod 24).
Then we know that p−3

2 ∈ Qp, but for this value there is one point (p−3
2 , 0) on

EF1 . Also (0, 0) on EF1 . Let H = Qp − {p−3
2 }. Then the sum of all elements

in H is hence p(p−1)(p+1)
24 − p−3

2 . Let x ∈ H. Then x3 + 3x2 + (2 − k)x is a
square, say x3 + 3x2 + (2− k)x = t2. Then y2 ≡ t2(mod p). So there are two
rational points (x, t) and (x, p − t). The sum of x-coordinates of these two
points is 2x, that is, for every x ∈ H, the sum of x-coordinates of two points
(x, t) and (x, p− t) is 2x. So the sum of x-coordinates of all points on EF1 is
2

(
p(p−1)(p+1)

24 − p−3
2

)
. Further as we said above, the point (p−3

2 , 0) is also on
EF1 . So

∑

[x]

Ex
F1

(Fp) = 2
(

p(p− 1)(p + 1)
24

− p− 3
2

)
+

p− 3
2

=
p3 − 7p + 18

12
.
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Similarly it can be shown that if p ≡ 13, 17(mod24), then
∑
[x]

Ex
F1

(Fp) =

p3+5p−18
12 and if i = k, then

∑
[x]

Ex
Fk

(Fp) = p3−4p+3
12 .

Theorem 10 If i = 1, then

∑

[y]

Ey
F1

(Fp) =





p2−3p
2 if p ≡ 1, 5(mod 24)

p2−p
2 if p ≡ 13, 17(mod 24)

and if i = k, then ∑

[y]

Ey
Fk

(Fp) =
p2 − 3p

2

for every prime p.

Proof. Let p ≡ 1, 5(mod 24) and let i = 1. Then EF1 : y2 = x3+3x2+(2−k)x.
Then we know from Theorem 7 that there are p−3

2 points x such that x3+3x2+

(2− k)x a square, that is,
(

x3+3x2+(2−k)x
Fp

)
= 1. Let x3 + 3x2 + (2− k)x = t2

for some integer t 6= 0. Then the quadratic congruence y2 ≡ t2(mod p) ⇔
y ≡ ±t(mod p) has two solutions y = t and y = −t = p − t. The sum
of these values of y is p. We know that there are p−3

2 points x such that
x3 + 3x2 + (2− k)x a square. So the sum of y−coordinates of all points (x, y)
on EF1 is p(p−3

2 ) = p2−3p
2 .

Similarly it can be shown that if p ≡ 13, 17(mod 24), then the sum of
y−coordinates of all points (x, y) on EF1 is p2−p

2 and if i = k, then the sum of
y−coordinates of all points (x, y) on EFk

is p2−3p
2 .
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