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On strong mixing property of cellular automata
with respect to Markov measures 1

Hasan Akın

Abstract

In this paper we study mixing properties of one-dimensional linear
cellular automata over the ring Zm, a particular class of dynamical sys-
tems, determined by right (left) permutative local rule F with respect
to the uniform Markov measure induced by doubly stochastic matrix
P = p(i,j) and the probability vector π. We prove that one-dimensional
linear cellular automata associated to right (resp. left) permutative local
rule F = F [l, r], 0 < l < r (resp. l < r < 0), is strong mixing with re-
spect to the uniform Markov measure. We also show that Z×N-actions
generated by the one-dimensional linear cellular automata determined by
bipermutative local rule F = F [l, r] and shift map is strong mixing with
respect to the uniform Markov measure.
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1 Introduction

Cellular automata (CAs for short), discovered by Ulam (1952) and von Neu-
mann (1951), have been systematically studied by Hedlund from a purely
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mathematical point of view [8]. Hedlund’s paper started investigation of cur-
rent problems in symbolic dynamics. The study of CAs from the point of view
of the ergodic theory has received remarkable attention in the last few years
([4], [5], [6], [9], [11]), because CAs have been widely investigated in a number
of disciplines (e.g., mathematics, physics, computer science, and so on).

It is well known that there are several notions of mixing (i.e. weak mixing,
strong mixing, mildly mixing, completely mixing and so on) of measure pre-
serving transformation on probability space in ergodic theory. It is important
to know how these notions are related with each other. If the measure pre-
serving transformation T on a probability space (X, B, µ) is strong mixing
then it is both weak mixing and ergodic, that is, strong mixing is a stronger
property than weak mixing and ergodic (see [13] and [15] for the details). The
last decade (see. e.g [12, 13, 15]), a lot papers are devoted to this subject.

Shirvani and Rogers in [14] have proved that all onto CAs are invariant and
strong mixing with respect to the Haar measure. In [13], Shereshevsky has
studied some strong ergodic properties of the natural extension of a measure
theoretic endomorphism. He has answered some questions raised in [14]. He
has also defined n-th iteration of a permutative CA and shown that if the
local rule F is right (left) permutative, then its n-th iteration also is right
(left) permutative.

In [10], it is proved that weak-mixing of f implies transitivity of the natural
extension of f , further, if f is mixing or weakly mixing, then chaoticity of f

(individual chaos) implies chaoticity of the natural extension of f (collective
chaos) and if X is a closed interval then the natural extension of f is chaotic
(in the sense of Devaney) if and only if f is weakly mixing. In [6], it is studied a
new definition of strong topological chaos for discrete time dynamical systems
which fulfills the informal intuition of chaotic behavior considering the class
of additive CAs.

In [11], Mass and Martinez have studied the dynamics of Markov measures
by a particular linear CA. They have reviewed some results on the evolution
of probability measures under CA acting on a fullshift.

In [9], Kleveland has proved that left (right) permutative CA TF [l,r] is
strong mixing with respect to product measure defined by normalized Haar-
measure, and some of the endomorphisms on the space of bi-infinite sequences
over a finite set even k-mixing with respect to product measure. In [9], it
has been generalized the mixing results. Cattaneo et al. [6] have studied the
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dynamical behavior of D-dimensional CAs. They have shown how to construct
ergodic D-dimensional linear CAs over Zm.

In [2], the author has investigated some ergodic properties of Z2-actions
generated by invertible linear CAs and shift transformation without consider-
ing the natural extension. Also in [1], the author has proved that Z×N-actions
generated by the bipermutative linear CAs and shift map is strong mixing with
respect to uniform Bernoulli measure.

Some ergodic properties of Markov and Bernoulli shifts have been investi-
gated in [7] and [15].

In this paper we study strong mixing property of one-dimensional linear
CA associated to right (left) permutative local rule with respect to a uniform
Markov measure induced by doubly stochastic matrix P = p(i,j) such that
p(i,j) = 1

m for all pair (i, j) in the point of view of ergodic theory. We prove
that one-dimensional linear CA associated to right (left) permutative local
rule F = F [l, r], 0 < l < r (resp. l < r < 0), is strong mixing with respect
to the uniform Markov measure. We also show that Z × N-actions generated
by the one-dimensional linear CAs determined by bipermutative local rule
F = F [l, r], l < 0 < r, and shift map is strong mixing with respect to the
uniform Markov measure. We generalize some results of Shereshevsky [13] for
the uniform Markov measure.

The rest of the paper is organized as follows. In Section 2 we establish the
basic formulation of problem to state our main theorems and we give some
necessary notations and definitions. In Section 3 we prove our main theorems
and some results.

2 Preliminaries

(1) Cellular Automata: Let Zm = {0, 1, . . . , m− 1} (m ≥ 2) be a ring and ZZm
be the space of all doubly-infinite sequences x = (xn)∞n=−∞, xn ∈ Zm. The
shift σ : ZZm → ZZm defined by (σx)i = xi+1 is a homeomorphism of compact
metric space ZZm. A CA is a map T : ZZm → ZZm defined for x = (xi)i∈Z, i ∈ Z
by

(1) (TF [l,r]x)n = F (xl+n, . . . , xn+r) =
r∑

i=l

λixi+n(mod m),

where F : Zr−l+1
m → Zm is a given local rule or map.
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In this paper, we consider one-dimensional linear CA TF [l, r] determined
by linear local rule F . Throughout the paper, we will use the notation TF [l,r]

for linear CA-map defined in Eq. (1) to emphasize the local rule F and the
numbers l and r.

The notion of permutative CA was first introduced by Hedlund in [8]. If
the linear local rule F : Zr−l+1

m → Zm is given in Eq. (1), then it is permuta-
tive in the jth variable if and only if gcd(λj ,m) = 1, where gcd denotes the
greatest common divisor. A local rule F is said to be right (respectively, left)
permutative, if gcd(λr,m) = 1 (respectively, gcd(λl,m) = 1). It is said that
F is bipermutative if it is both left and right permutative.

Example 1 Consider the local rule F : Z3
3 → Z3 as follows:

F (x−1, x0, x1) = (2x−1 + 2x0 + x1) (mod 3),

then F is both left and right permutative.

Let now l, r ∈ Z, l ≤ r be given and let F : Zr−l+1
m → Zm be a fixed local rule.

Lemma 1 ([13], Lemma 1.5). If the local rule F : Zu
m → Zm is right (left)

permutative, then so is its k-th iteration F k : Zk(u−1)+1
m → Zm for each integer

k ≥ 1.

Lemma 2 ([13], Lemma 1.6). The kth iteration T k
F [l, r] of CA TF [l, r] gener-

ated by the linear local rule F coincides with the CA TF k[kl, kr].

In [4], it was determined the properties of endomorphisms and automorphisms
of the shift dynamical system.
(2) Markov Measure: Let P = (p(i,j)) denote a m × m stochastic matrix
(p(i,j) ≥ 0,

∑m−1
j=0 p(i,j) = 1) with entries p(i,j) and let π = {π0, π1, . . . , πm−1}

be its left eigenvector. It is well known that πP = P . A pair π, P defines a set
function µπP on the cylinders of ZZm. Recall that it is defined the associated
Markov measure by defined as follows:

(2) µπP (0[i0, . . . , ik]k) = πi0p(i0,i1) . . . p(ik−1,ik)

(see [7, 15] for the details).
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A Markov measure on ZZm is uniform, if measure of any one-dimensional
cylinder is equal to 1

m , where m is the cardinality of Zm. A doubly stochastic
matrix is a matrix P such that P and P tr (transpose) are both stochastic.
If a matrix P is a doubly stochastic then corresponding Markov measure is
a uniform measure. If the cardinality of Zm is equal to m, then, any doubly
stochastic matrix P of m×m size will generate uniform Markov measure.

In this paper, we consider the uniform Markov measures induced by doubly
stochastic matrices P = (p(i,j)) such that

(3) p(i,j) =
1
m

for all pairs (i, j).

3 Formulation of the problem and results

Theorem 1 ([15], Theorem 1.17) Let (X,B, µ) be a measure space and let A
be a semi-algebra that generates B. Let T : X → X be a measure-preserving
transformation. Then

(i) T is ergodic iff ∀A,B ∈A

lim
n→∞

1
n

n−1∑

i=0

µ(T−iA ∩B) = µ(A)µ(B),

(ii) T is weak-mixing iff ∀ A,B∈A

lim
n→∞

n−1∑

i=0

∣∣µ(T−iA ∩B)− µ(A)µ(B)
∣∣ = 0

and
(iii) T is strongly-mixing iff ∀A,B ∈ A

lim
n→∞µ(T−nA ∩B) = µ(A)µ(B).(4)

Firstly, let us consider the following one-dimensional linear CA

(5) (TF [l, r]x)n = F (xl+n, . . . , xn+r) =
r∑

i=l

λixi+n(mod m),

where 0 < l < r (or l < r < 0).
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Lemma 3 Suppose that the CA TF [l,r] is defined as in (5) and assume that F

is right (resp. left) permutative and 0 < l < r (resp. l < r < 0) and Markov
measure µπP be defined as in (3), then linear CA TF [l,r] is the uniform Markov
measure-preserving transformation.

Proof. Let A = u[a(0)
0 , . . . , a

(0)
v ]u+v be a cylinder set, where u ≤ v, then we

have;

µπP (T−1
F [l, r](A)) = µπP (

⋃

a
(1)
l ,...,a

(1)
r+v

(l+u[a(1)
l , . . . , a

(1)
r+v]r+u+v))

=
∑

a
(1)
l ,...,a

(1)
r+v

µπP (l+u[a(1)
l , . . . , a

(1)
r+v]r+u+v))

= m(r−l)π
(a

(1)
l )

p
(a

(1)
l ,a

(1)
l+1)

...p
(a

(1)
r+v−1,a

(1)
r+v)

= µπP (A).

This completes the proof.
The following theorem generalizes the notion of strong mixing with respect

to the Markov measure (see [9] and [13] for details).

Theorem 2 Suppose that at least one of the following conditions is satisfied:
(RP) 0 < l < r and the local rule F : Zr−l+1

m → Zm is right permutative;
(LP) l < r < 0 and the local rule F : Zr−l+1

m → Zm is left permutative.
Then TF [l, r] is strong mixing with respect to the uniform Markov measure
satisfying (3).

Proof. Let us firstly consider left permutative local rule F as follows;

(6) F (xl, . . . , xr) =
r∑

i=l

λixi(mod m),

where λi ∈ Zm and 0 < l < r. If we take l < r < 0, then similarly we can
prove the Theorem 2.

Let A =u [a0, . . . , av]u+v and B =y [b(o)
0 , . . . , b

(o)
z ]y+z be two cylinder sets.

Then we can observe that

A ∩ T−n
F [l, r]B =
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⋃
xv+1,...,xnl−1

⋃

b
(n)
nl ,...,b

(n)
nr+z

(u[a0, . . . , av, xv+1, . . . , xnl−1, b
(n)
nl , . . . , b

(n)
nr+z](nr+y+z)),

where F (b(n)
i+l, . . . , b

(n)
i+r) =

∑r
k=l λkb

(n)
i+k(mod m)=b

(n−1)
i for all i = (n−1)l, . . . ,

(n − 1)r + z. For brevity assume that µπP = µ. Thus for nl > u + v − y we
have

µ(A ∩ T−n
F [l, r]B) =

= µ(
⋃

xv+1,...,xnl−1

⋃

b
(n)
nl ,...,b

(n)
nr+z

(u[a0, . . . , av, xv+1,. . ., xnl−1, b
(n)
nl , . . . , b

(n)
nr+z](nr+y+z)))

= µ(A)(
∑

b
(n)
nl ,...,b

(n)
nr+z

∑
xv+1,...,xnl−1

p(av ,xv+1)...p(xnl−1,b
(n)
nl )

×

p
(b

(n)
nl ,b

(n)
nl+1)

...p
(b

(n)
nr+z−1,b

(n)
nr+z)

)

= µ(A)
∑

b
(n)
nl ,...,b

(n)
nr+z

p
(nl+y−u−v)

(av ,b
(n)
nl )

p
(b

(n)
nl ,b

(n)
nl+1)

...p
(b

(n)
nr+z−1,b

(n)
nr+z)

= µ(A)
∑

b
(n)
nl ,...,b

(n)
nr+z

π
b
(n)
nl

p
(b

(n)
nl ,b

(n)
nl+1)

...p
(b

(n)
nr+z−1,b

(n)
nr+z)

= µ(A)µ(B).

however we know that p
(nl+y−u−v)

(av, b
(n)
nl )

→ π
b
(n)
nl

as n →∞ (by putting P in terms

of Jordan forms) and so we know that

lim
n→∞µ(A ∩ T−n

F [l, r]B) = µ(A)µ(B).

Thus proof is completed.

Lemma 4 Let the local rule F be defined as equation (5). Then we have

((TF [l,r] ◦ σ−s)x(n))i =
r∑

k=l

λkx
(n)
k+s+i(mod m) = x

(n−1)
i+s ,

where x
(n)
i is the ith coordinate of x(n) ∈ ZZm and for the sake of appropriate-

ness we assume that σ is left shift.

Lemma 5 Suppose that CA TF [l,r] is given as in (5) and let Markov measure
µπP be defined as in (3), then Φ = TF [l,r] ◦ σ is a uniform Markov measure
preserving transformation, that is, µπP (Φ−1(A)) = µπP (A).
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Proof. Let us consider the following cylinder set

A = {x ∈ ZZm : xu = i
(0)
0 , . . . , xu+v = i(0)

v } =u [i(0)
0 , . . . , i(0)

v ]u+v,

where i
(0)
0 , . . . , i

(0)
v ∈ Zm.

The first preimage of the cylinder A =u [i(0)
0 , . . . , i

(0)
v ]u+v under the Φ =

TF [l,r] ◦ σ consists of the union of the following cylinder sets;

{x ∈ ZZm : xu+l+1 = i
(1)
l+1, . . . , xu+v+r+1 = i

(1)
v+r+1; i

(1)
l+1, . . . , i

(1)
v+r+1 ∈ Zm},

where

F (x(1)
l+n, . . . , x

(1)
r+n) =

r∑

k=l

λkx
(1)
k+n(mod m) = x(0)

n .

Now let us calculate the uniform Markov measure of (TF [l,r] ◦ σ)−1(A);

µπP ((TF [l,r] ◦ σ)−1(A)) = µπP (
⋃

i
(1)
l+1,...,i

(1)
v+r+1

(u+l+1[i
(1)
l+1, . . . , i

(1)
v+r+1]u+v+r+1))

=
∑

i
(1)
l+1,...,i

(1)
v+r+1

µπP (u+l+1[i
(1)
l+1, . . . , i

(1)
v+r+1]u+v+r+1)

= m(r−l)π
(i

(1)
l+1)

p
(i

(1)
l+1,i

(1)
l+2)

...p
(i

(1)
v+r,i

(1)
v+r+1)

= µπP (A).

Before giving the proof of main theorem, we must describe whether Z × N-
actions Φ(t,s) = T t

F [l,r] ◦ σs is the uniform Markov measure-preserving trans-
formation.
Notice that Φ(t,s) = T t

F [l,r] ◦ σs = TF t[tl,tr] ◦ σs = TF t[tl−s,tr−s] = σs ◦ TF t[tl,tr],

t, s ∈ N.

Lemma 6 Let CA TF [l,r] be given as in (5) and Markov measure µπP be
as in (3) then Φ(t,s) = T t

F [l,r] ◦ σs is a uniform Markov measure-preserving
transformation.

Proof. Similar to Lemma 5 let us consider the cylinder

A = {x ∈ ZZm : xu = i
(0)
0 , . . . , xu+v = i(0)

v } =u [i(0)
0 , . . . , i(0)

v ]u+v,

where i
(0)
0 , . . . , i

(0)
v ∈ Zm.
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The first preimage of the cylinder A =u [i(0)
0 , . . . , i

(0)
v ]u+v under the Φ(t, s)

consists of the union of the following cylinder sets;

{x ∈ ZZm : xu+lt+s = i
(t)
lt+s, . . . , xu+v+rt+s = i

(t)
v+rt+s; i

(t)
lt+s, . . . , i

(t)
v+rt+s ∈ Zm},

where F (x(t)
l+n, . . . , x

(t)
r+n) =

∑r
k=l λkx

(t)
k+n(mod m) = x

(t−1)
n . Now let us calcu-

late the uniform Markov measure of (Φ(t,s))−1A;

µπP (Φ(−t,−s)(A)) = µπP (
⋃

i
(t)
lt+s,...,i

(t)
v+rt+s

(u+lt+s[i
(t)
lt+s, . . . , i

(t)
v+rt+s]u+v+rt+s))

=
∑

i
(t)
lt+s,...,i

(t)
v+rt+s

µπP (u+lt+s[i
(t)
lt+s, . . . , i

(t)
v+rt+s]u+v+rt+s)

= mt(r−l)π
(i

(t)
lt+s)

p
(i

(t)
lt+s,i

(t)
lt+s+1)

...p
(i

(t)
v+rt+s−1,i

(t)
v+rt+s)

= µπP (A).

The proof is completed.

In this section, the main result is the following theorem. This theorem
contains an analogous result for the Z2-action generated by the shift and a
linear CA.

Theorem 3 Suppose that the Markov measure µπP is as in (3). Let CA TF [l,r]

be given as (5) and F be bipermutative with l < 0 < r, then Z × N-actions
Φ(s,t) is strong mixing with respect to the uniform Markov measure µπP .

Proof. Let A =u [a(o)
0 , . . . , a

(o)
v ]u+v and B =y [b0, . . . , bz]y+z be two cylinder

sets. Then we can observe that

(T t
F [l,r] ◦ σs)−nA =

⋃

a
(n)
nlt ,...,a

(n)
v+nrt

(u+n(tl+s)[a
(n)
n(tl+s), . . . , a

(n)
v+n(tl+s)]u+v+n(rt+s)),

where F (x(n)
i+l, . . . , x

(n)
i+r)=

∑r
k=l λkx

(n)
i+k(mod m)=x

(n−1)
i . Thus from Lemma 5
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for n(tl + s) > y + z − u we have

µ(B ∩ (Φ(s,t))−nA) =

µ(
⋃

xz+1,...,xn(tl+s)−1

⋃

a
(n)
n(tl+s)

,...,a
(n)
v+n(tr+s)

×

(y[b0, . . . , bz, xz+1, . . . , xn(tl+s)−1, a
(n)
n(tl+s), . . . , a

(n)
v+n(tr+s)]y+u+v+n(rt+s)))

= µ(B)(
∑

a
(n)
n(tl+s)

,...,a
(n)
v+n(tr+s)

∑
xz+1,...,xn(tl+s)−1

p(bz , xz+1) . . . p
(xn(tl+s)−1, a

(n)
n(tl+s)

)
×

p
(a

(n)
n(tl+s)

,a
(n)
n(tl+s)+1

)
. . . p

(a
(n)
n(tr+s)+v−1

,a
(n)
n(tr+s)+v

)
)

= µ(B)
∑

a
(n)
n(tl+s)

,...,a
(n)
v+n(tr+s)

p
(n(tl+s)+u−y−z)

(bz , a
(n)
n(tl+s)

)
×

p
(a

(n)
n(tl+s)

,a
(n)
n(tl+s)+1

)
. . . p

(a
(n)
n(tr+s)+v−1

,a
(n)
n(tr+s)+v

)

= µ(B)
∑

a
(n)
n(tl+s)

,...,a
(n)
v+n(tr+s)

π
a
(n)
n(tl+s)

p
(a

(n)
n(tl+s)

,a
(n)
n(tl+s)+1

)
. . . p

(a
(n)
n(tr+s)+v−1

,a
(n)
n(tr+s)+v

)

= µ(A)µ(B),

where we know that p
(n(tl+s)+u−y−z)

(bz ,a
(n)
n(tl+s)

)
→ π

a
(n)
n(tl+s)

as n → ∞ (by putting P in

terms of Jordan forms) and so we know that

lim
n→∞µ(A ∩ (T s

F [l,r] ◦ σt)−nB) = µ(A)µ(B).

4 Conclusions

In this paper we study strong mixing property of a certain class of linear
CA with respect to uniform Markov measure induced by doubly stochastic
matrix P = (p(i,j)) such that p(i,j) = 1

m for all pair (i, j). We prove that
a 1-dimensional linear CA satisfying certain additional conditions preserves
this uniform Markov measure and is strongly mixing with respect to any such
measure. We also generalize an analogous result for the Z2-action generated
by the shift and a 1-dimensional linear CA.

Are there any D-dimensional CA, strong mixing with respect to the other
Markov measures?
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If Φ is a strong mixing transformation on the probability space (X,B, µπP ),
then it is clear that it is necessary weak mixing (and thus also ergodic). So,
from theorem 2, Z×N-action Φ is both weak mixing and ergodic with respect
to uniform Markov measure µπP .

One can prove that the Markov symbolic dynamic system is k-mixing
(k ≥ 1).

We think that our results will also give a possibility of proving certain mix-
ing properties for a complete formal classification of invertible multi-dimensional
CA defined on alphabets of composite cardinality (or the other finite rings)
with respect to uniform Markov measure. In [3], Akın and Şiap have inves-
tigated invertible CA over the Galois rings. Thus, similar computations and
explorations of CA’s over different rings remain to be of interest.
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