On Lorentzian β-Kenmotsu manifolds ${ }^{1}$

G.T. Sreenivasa, Venkatesha, C.S. Bagewadi

Abstract

The present paper deals with Lorentzian β-Kenmotsu manifold with conformally flat and quasi conformally flat curvature tensor. It is proved that in both cases, the manifold is locally isometric with a sphere $S^{2 n+1}(c)$. Further it is shown that an Lorentzian β-Kenmotsu manifold with $R(X, Y) . C=0$ is an η-Einstein manifold.

2010 Mathematics Subject Classification: 53C15, 53C25.
Key words and phrases: Trans-Sasakian manifolds, β-Kenmotsu manifolds, Lorentzian β-Kenmotsu manifolds.

1 Introduction

In [12], S. Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. He

[^0]showed that they can be divided into three classes:
(1) homogeneous normal contact Riemannian manifolds with $c>0$,
(2) global Riemannian products of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature if $c=0$ and
(3) a warped product space $\mathbf{R} \times{ }_{f} \mathbf{C}$ if $c>0$. It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure. Kenmotsu [7] characterized the differential geometric properties of the manifolds of class (3); the structure so obtained is now known as Kenmotsu structure. In general, these structures are not Sasakian [7]. In the Gray-Hervella classification of almost Hermitian manifolds [6], there appears a class, W_{4}, of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [5]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [11] if the product manifold $M \mathbf{R}$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}$ [8], [9] coincides with the class of the trans-Sasakian structures of type (α, β). In fact, in [9], local nature of the two subclasses, namely, C_{5} and C_{6} structures, of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type $(0,0),(0, \beta)$ and $(\alpha, 0)$ are cosymplectic [4], β-Kenmotsu [7] and α-Sasakian [7] respectively. In [13] it is proved that trans-Sasakian structures are generalized quasi-Sasakian [10]. Thus, trans-Sasakian structures also provide a large class of generalized quasiSasakian structures.

An almost contact metric structure (ϕ, ξ, η, g) on M is called a transSasakian structure [11] if ($M \times \mathbf{R}, J, G$) belongs to the class $W_{4}[6]$, where J is the almost complex structure on $M \mathbf{R}$ defined by

$$
J(X, f d / d t)=(\phi X-f \xi, \eta(X) f d / d t)
$$

for all vector fields X on M and smooth functions f on $M \times \mathbf{R}$, and G is the product metric on $M \times \mathbf{R}$. This may be expressed by the condition [3]

$$
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X)
$$

for some smooth functions α and β on M, and we say that the trans-Sasakian structure is of type (α, β).

Theorem 1 A trans-sasakian structure of type (α, β) with β a nonzero constant is always β-Kenmotsu

In this case β becomes a constant. If $\beta=1$, then β-Kenmotsu manifold is Kenmotsu.

In this paper, we investigate Lorentzian β-Kenmotsu manifolds in which

$$
\begin{equation*}
C=0 \tag{1}
\end{equation*}
$$

where C is the Weyl conformal curvature tensor. Then we study Lorentzian β-Kenmotsu manifolds in which

$$
\begin{equation*}
\widetilde{C}=0 \tag{2}
\end{equation*}
$$

where \widetilde{C} is the quasi conformal curvature tensor. In both cases, it is shown that Lorentzian β-Kenmotsu is isometric with a sphere $S^{2 n+1}(c)$, where $c=\alpha^{2}$. Finally Lorentzian β-Kenmotsu manifolds with

$$
\begin{equation*}
R(X, Y) \cdot C=0 \tag{3}
\end{equation*}
$$

has been considered, where $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold of tangent vectors X, Y. It is shown that Lorentzian β-Kenmotsu manifold is a η-Einstein.

2 Preliminaries

A differentiable manifold M of dimension $(2 n+1)$ is called Lorentzian β Kenmotsu manifold if it admits a (1,1)-tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy [1], [2],
(a) $\eta \xi=-1, \quad$ (b) $\phi \xi=0, \quad$ (c) $\eta(\phi X)=0$,
(a) $\phi^{2} X=X+\eta(X) \xi, \quad$ (b) $g(X, \xi)=\eta(X)$,

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{6}
\end{equation*}
$$

for all $X, Y \in T M$.
Also Lorentzian β-Kenmotsu manifold M is satisfying

$$
\begin{align*}
\nabla_{X} \xi & =\beta[X-\eta(X) \xi], \tag{7}\\
\left(\nabla_{X} \eta\right)(Y) & =\beta[g(X, Y)-\eta(X) \eta(Y)], \tag{8}
\end{align*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.
Further, on Lorentzian β-Kenmotsu manifold M the following relations hold

$$
\begin{align*}
\eta(R(X, Y) Z) & =\beta^{2}[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)], \tag{9}\\
R(\xi, X) Y & =\beta^{2}(\eta(Y) X-g(X, Y) \xi), \tag{10}\\
R(X, Y) \xi & =\beta^{2}(\eta(X) Y-\eta(Y) X), \tag{11}\\
S(X, \xi) & =-2 n \beta^{2} \eta(X), \tag{12}\\
Q \xi & =-2 n \beta^{2} \xi, \tag{13}\\
S(\xi, \xi) & =2 n \beta^{2} . \tag{14}
\end{align*}
$$

3 Lorentzian β-Kenmotsu manifolds with $C=0$

The conformal curvature tensor C on M is defined as

$$
\begin{aligned}
(15) C(X, Y) Z= & R(X, Y) Z+\left[\frac{1}{2 n-1}\right][S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y \\
& -g(Y, Z) Q Z]-\left[\frac{r}{2 n(2 n-1)}\right][g(X, Z) Y-g(Y, Z) X],
\end{aligned}
$$

where $S(X, Y)=g(Q X, Y)$.
Using (1) we get from (15)
(16) $\quad R(X, Y) Z=\left[\frac{1}{2 n-1}\right][S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X$

$$
-g(X, Z) Q Y]+\left[\frac{r}{2 n(2 n-1)}\right][g(X, Z) Y-g(Y, Z) X] .
$$

Taking $Z=\xi$ in (16) and using (5), (11) and (12), we find
(17) $[\eta(X) Q Y-\eta(Y) Q X]=\left[2 n \beta^{2}+\frac{r}{2 n}-(2 n-1) \beta^{2}\right][\eta(X) Y-\eta(Y) X]$.

Taking $Y=\xi$ in (17) and using (4), we get

$$
\begin{equation*}
Q X=\left[\frac{r}{2 n}+\beta^{2}\right] X+\left[\frac{r}{2 n}+\beta^{2}+2 n \beta^{2}\right] \eta(X) \xi \tag{18}
\end{equation*}
$$

Contracting (18), we get

$$
\begin{equation*}
r=-2 n(2 n+1) \beta^{2} \tag{19}
\end{equation*}
$$

Using (19) in (18), we find

$$
\begin{equation*}
Q X=-2 n \beta^{2} X \tag{20}
\end{equation*}
$$

Using (20) in (16) and simplifying we get

$$
\begin{equation*}
R(X, Y) Z=\beta^{2}[g(X, Z) Y-g(Y, Z) X] \tag{21}
\end{equation*}
$$

Therefore the manifold is of constant scalar curvature β^{2}. Hence we can state:

Theorem 2 A conformally flat Lorentzian β-Kenmotsu manifold is locally isometric to a sphere $S^{2 n+1}(c)$, where $c=\beta^{2}$.

4 Lorentzian β-Kenmotsu manifolds with $\widetilde{C}=0$

The quasi conformal curvature tensor \widetilde{C} on M is defined as
(22) $\widetilde{C}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X$

$$
-g(X, Z) Q Y]-\left[\frac{r}{2 n+1}\right]\left[\frac{a}{2 n}+2 b\right][g(Y, Z) X-g(X, Z) Y]
$$

where a, b are constants such that $a, b \neq 0$ and $S(Y, Z)=g(Q Y, Z)$.
Using (3), we find from (22) that
(23) $\quad R(X, Y) Z=\frac{b}{a}[S(X, Z) Y-S(Y, Z) X+g(X, Z) Q Y-g(Y, Z) Q X]$

$$
+\left[\frac{r}{(2 n+1) a}\right]\left[\frac{a}{2 n}+2 b\right][g(Y, Z) X-g(X, Z) Y]
$$

Taking $Z=\xi$ in (23) and using (5), (11) and (12), we get

$$
\begin{equation*}
[\eta(Y) Q X-\eta(X) Q Y]=\left[\frac{r}{(2 n+1) b}\left(\frac{a}{2 n}+2 b\right)+2 n \beta^{2}+\frac{a}{b} \beta^{2}\right][\eta(Y) X-\eta(X) Y] \tag{24}
\end{equation*}
$$

Taking $Y=\xi$ in (24) and applying (4), we have

$$
\begin{align*}
Q X= & {\left[\frac{r}{(2 n+1) b}\left(\frac{a}{2 n}+2 b\right)+2 n \beta^{2}+\frac{a}{b} \beta^{2}\right] X } \tag{25}\\
& +\left[\frac{r}{(2 n+1) b}\left(\frac{a}{2 n}+2 b\right)+4 n \beta^{2}+\frac{a}{b} \beta^{2}\right] \eta(X) \xi
\end{align*}
$$

Contracting (25), we get

$$
\begin{equation*}
r=-2 n(2 n+1) \beta^{2} \tag{26}
\end{equation*}
$$

Using (26) in (25), we find

$$
\begin{equation*}
Q X=-2 n \beta^{2} X \tag{27}
\end{equation*}
$$

Using (27) in (23), we get

$$
\begin{equation*}
R(X, Y) Z=\beta^{2}[g(X, Z) Y-g(Y, Z) X] \tag{28}
\end{equation*}
$$

Thus we can state

Theorem 3 A quasi conformally flat Lorentzian β-Kenmotsu manifold is locally isometric to a sphere $S^{2 n+1}(c)$, where $c=\beta^{2}$.

5 Lorentzian β-Kenmotsu manifold satisfying
 $$
R(X, Y) \cdot C=0
$$

In view of (5) and (9), we obtained from (15)

$$
\begin{aligned}
(29) \eta(C(X, Y) Z) & =\left[-\beta^{2}+\frac{2 n \beta^{2}}{2 n-1}+\frac{r}{2 n(2 n-1)}\right][g(Y, Z) \eta(X) \\
& -g(X, Z) \eta(Y)]-\left[\frac{1}{2 n-1}\right][S(Y, Z) \eta(X)-S(X, Z) \eta(Y)]
\end{aligned}
$$

Putting $Z=\xi$ in (29) and using (5) and (12), we get

$$
\begin{equation*}
\eta(C(X, Y) \xi)=0 \tag{30}
\end{equation*}
$$

Again taking $X=\xi$ in (29) we have

$$
\begin{align*}
\eta(C(\xi, Y) Z)= & {\left[\beta^{2}-\frac{2 n \beta^{2}}{2 n-1}-\frac{r}{2 n(2 n-1)}\right][g(Y, Z)+\eta(Y) \eta(Z)] } \tag{31}\\
& +\left[\frac{1}{2 n-1}\right]\left[S(Y, Z)-2 n \beta^{2} \eta(Y) \eta(Z)\right]
\end{align*}
$$

Now
(32) $(R(X, Y) C)(U, V) Z=R(X, Y) C(U, V) Z-C(R(X, Y) U, V) Z$

$$
-C(U, R(X, Y) V) Z-C(U, V) R(X, Y) Z
$$

By virtue of $R(X, Y) \cdot C=0$, we have
$R(X, Y) C(U, V) Z-C(R(X, Y) U, V) Z-C(U, R(X, Y) V) Z-C(U, V) R(X, Y) Z=0$.
Therefore, $g[R(\xi, Y) C(U, V) Z, \xi]-g[C(R(\xi, Y) U, V) Z, \xi]$
$-g[C(U, R(\xi, Y) V) Z, \xi]-g[C(U, V) R(\xi, Y) Z, \xi]=0$.
From this it follows that

$$
\begin{align*}
& \beta^{2} \grave{C}(U, V, Z, Y)+\beta^{2} \eta(Y) \eta(C(U, V) Z)-\beta^{2} \eta(U) \eta(C(Y, V) Z) \tag{33}\\
& +\beta^{2} g(U, Y) \eta(C(\xi, V) Z)-\beta^{2} \eta(V) \eta(C(U, Y) Z) \\
& +\beta^{2} g(Y, V) \eta(C(U, \xi) Z)-\beta^{2} \eta(Z) \eta(C(U, V) Y)=0
\end{align*}
$$

where $\grave{C}(U, V, Z, Y)=g(C(U, V) Z, Y)$.
Putting $Y=U$ in (33), we get

$$
\begin{align*}
\grave{C}(U, V, Z, U) & +g(U, U) \eta(C(\xi, V) Z)+g(U, V) \eta(C(U, \xi) Z) \tag{34}\\
& -\eta(V) \eta(C(U, U) Z)-\eta(Z) \eta(C(U, V) U)=0
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots,(2 n+1)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq(2 n+1)$ of the relation (34) for $U=e_{i}$,
yields

$$
\begin{align*}
& \eta(C(\xi, V) Z)=\left[\frac{1}{(2 n+1)(2 n-1)}\right] S(V, Z) \tag{35}\\
& +\left[\frac{\beta^{2}}{2 n+1}-\frac{2 n \beta^{2}}{(2 n+1)(2 n-1)}-\frac{r}{2 n(2 n+1)(2 n-1)}\right] g(V, Z) \\
& +\left[\frac{\beta^{2}}{2 n+1}-\frac{4 n \beta^{2}}{(2 n+1)(2 n-1)}-\frac{r}{2 n(2 n+1)(2 n-1)}\right] \eta(V) \eta(Z)
\end{align*}
$$

From (31) and (35), we have

$$
\begin{equation*}
S(V, Z)=\left[\frac{r}{2 n}+\beta^{2}\right] g(V, Z)+\left[\frac{r}{2 n}+\beta^{2}+2 n \beta^{2}\right] \eta(V) \eta(Z) \tag{36}
\end{equation*}
$$

Hence we can state the following:

Theorem 4 In a Lorentzian β-Kenmotsu manifold M, if the relation $R(X, Y)$. $C=0$ holds then the manifold is η-Einstein.

References

[1] C.S. Bagewadi, D.G. Prakasha and N.S. Basavarajappa, On Lorentzian β-Kenmotsu manifolds, Int. Jour. Math. Analysis., 19(2), 2008, 919-927.
[2] C.S. Bagewadi and E. Girish Kumar, Note on Trans-Sasakian manifolds, Tensor.N.S., 65(1), 2004, 80-88.
[3] D.E. Blair and J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34, 1990, 199-207.
[4] D.E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509, 1976, 146.
[5] S. Dragomir and L. Ornea, Locally conformal Kaehler geometry, Progress in mathematics 155, Birkhauser Boston, Inc., MA, 1998.
[6] A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4), 1980, 35-58.
[7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math.J., 24, 1972, 93-103.
[8] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann.Mat.Pura Appl., 162(4), 1992, 77-86.
[9] J.C. Marrero and D. Chinea, On trans-Sasakian manifolds, Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III(Spanish)(Puerto de la Cruz, 1989), 655-659, Univ. La Laguna, La Laguna, 1990.
[10] R.S. Mishra, Almost contact metric manifolds, Monograph 1, Tensor Society of India, Lucknow, 1991.
[11] J.A. Oubina, New classes of contact metric structures, Publ.Math.Debrecen, 32(3-4), 1985, 187-193.
[12] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J, 21, 1969, 21-38.
[13] M.M. Tripathi, Trans-Sasakian manifolds are generalized quasi-Sasakian, Nepali Math.Sci.Rep., 18(1-2), 1999-2000, 11-14.

G.T. Sreenivasa,

Department of Mathematics,
Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, email:sreenivasgt@gmail.com

Venkatesha, C.S.Bagewadi,
Department of Mathematics, Kuvempu University, Shimoga-577 451, Karnataka, India, email:vensprem@gmail.com csbagewadi@gmail.com

[^0]: ${ }^{1}$ Received 20 January, 2009
 Accepted for publication (in revised form) 3 April, 2009

