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On some 2-Banach spaces 1

Hemen Dutta

Abstract

The main aim of this article is to introduce some difference sequence

spaces with elements in a finite dimensional 2-normed space and extend

the notion of 2-norm and derived norm to thus constructed spaces. We

investigate the spaces under the action of different difference operators

and show that these spaces become 2-Banach spaces when the base space

is a 2-Banach space. We also prove that convergence and completeness in

the 2-norm is equivalent to those in the derived norm as well as show that

their topology can be fully described by using derived norm. Further we

compute the 2-isometric spaces and prove the Fixed Point Theorem for

these 2-Banach spaces.
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1 Introduction

The concept of 2-normed spaces was initially developed by Gähler [3] in the

mid of 1960’s. Since then, Gunawan and Mashadi [5], Gürdal [6] and many

others have studied this concept and obtained various results.

Let X be a real vector space of dimension d, where 2 ≤ d. A real-valued

function ‖., .‖ on X2 satisfying the following four conditions:

(1) ‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent,

(2) ‖x1, x2‖ is invariant under permutation,

(3) ‖αx1, x2‖ = |α|‖x1, x2‖, for any α ∈ R,

(4) ‖x + x′, x2‖ ≤ ‖x, x2‖+ ‖x′, x2‖
is called a 2-norm on X, and the pair (X, ‖., .‖) is called a 2-normed space.

A sequence (xk) in a 2-normed space (X, ‖., .‖) is said to converge to some

L ∈ X in the 2-norm if

lim
k→∞

‖xk − L, u1‖ = 0, for every u1 ∈ X.

A sequence (xk) in a 2-normed space (X, ‖., .‖) is said to be Cauchy with

respect to the 2-norm if

lim
k,l→∞

‖xk − xl, u1‖ = 0, for every u1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said

to be complete with respect to the 2-norm. Any complete 2-normed space is

said to be 2-Banach space.

The notion of difference sequence space was introduced by Kizmaz [7], who

studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was

further generalized by Et and Colak [1] by introducing the spaces `∞(∆s),

c(∆s) and c0(∆s). Another type of generalization of the difference sequence
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spaces is due to Tripathy and Esi [8], who studied the spaces `∞(∆m), c(∆m)

and c0(∆m). Tripathy, Esi and Tripathy [9] generalized the above notions and

unified these as follows:

Let m, s be non-negative integers, then for Z a given sequence space we

have

Z(∆s
m) = {x = (xk) ∈ w : (∆s

mxk) ∈ Z},

where ∆s
mx = (∆s

mxk) = (∆s−1
m xk−∆s−1

m xk+m) and ∆0
mxk = xk for all k ∈ N ,

which is equivalent to the following binomial representation:

∆s
mxk =

s∑

v=0

(−1)v

(
s

v

)
xk+mv.

Let m, s be non-negative integers, then for Z a given sequence space we

define:

Z(∆s
(m)) = {x = (xk) ∈ w : (∆s

(m)xk) ∈ Z},

where ∆s
(m)x = (∆s

(m)xk) = (∆s−1
(m)xk − ∆s−1

(m)xk−m) and ∆0
(m)xk = xk for all

k ∈ N , which is equivalent to the following binomial representation:

∆s
(m)xk =

s∑

v=0

(−1)v

(
s

v

)
xk−mv.

It is important to note here that we take xk−mv = 0, for non-positive values

of k −mv.

Let (X, ‖., .‖X) be a finite dimensional real 2-normed space and w(X)

denotes X-valued sequence space. Then for non-negative integers m and s, we

define the following sequence spaces:

c0(‖., .‖, ∆s
(m)) = {(xk) ∈ w(X) : lim

k→∞
‖∆s

(m)xk, z1‖X = 0, for every z1 ∈
X},

c(‖., .‖, ∆s
(m)) = {(xk) ∈ w(X) : lim

k→∞
‖∆s

(m)xk − L, z1‖X = 0, for some L

and for every z1 ∈ X},
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`∞(‖., .‖,∆s
(m)) = {(xk) ∈ w(X) : sup

k
‖∆s

(m)xk, z1‖X < ∞, for every z1

∈ X}.
It is obvious that c0(‖., .‖,∆s

(m)) ⊂ c(‖., .‖,∆s
(m)) ⊂ `∞(‖., .‖, ∆s

(m)). Also

for Z = c0, c and `∞, we have

(1) Z(‖., .‖, ∆i
(m)) ⊂ Z(‖., .‖, ∆s

(m)), i = 0, 1, . . . , s− 1.

Similarly we can define the spaces c0(‖., .‖, ∆s
m), c(‖., .‖,∆s

m) and `∞(‖., .‖, ∆s
m).

2 Discussions and Main Results

In this section we give some examples associated with 2-normed space and in-

vestigate the main results of this article involving the sequence spaces

Z(‖., .‖, ∆s
(m)) and Z(‖., .‖, ∆s

m), for Z = c0, c and `∞. Further we compute

2-isometric spaces and give the fixed point theorem for these spaces.

Example 1 AS an example of a 2-normed space, we may take X = R2 being

equipped with the 2-norm ‖x, y‖ = the area of the parallelogram spanned by

the vectors x and y, which may be given explicitly by the formula:

‖x, y‖ = |x1y2 − x2y1|, x = (x1, x2), y = (y1, y2) ∈ X.

Example 2 Let us take X = R2 and consider a 2-norm ‖., .‖X as defined

above. Consider the divergent sequence x = {1̄, 2̄, 3̄, . . . } ∈ w(X), where k̄ =

(k, k), for each k ∈ N . But x belongs to Z(‖., .‖, ∆) and Z(‖., .‖, ∆(1)). Hence

by (1) for every m, s > 1, x belong to Z(‖., .‖,∆s
(m)) and Z(‖., .‖,∆s

m), for Z

= c0, c and `∞.

Theorem 1 The spaces Z(‖., .‖, ∆s
(m)) and Z(‖., .‖, ∆s

m), for Z = c0, c and

`∞ are linear.
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Proof. Proof is easy and so omitted.

Theorem 2 (i) Let Y be any one of the spaces Z(‖., .‖, ∆s
(m)), for Z = c0, c

and `∞. We define the following function ‖., .‖Y on Y × Y by

‖x, y‖Y = 0, if x, y are linearly dependent,

= sup
k
‖∆s

(m)xk, z1‖X , for every z1 ∈ X, if x, y are linearly independent.

(2) Then ‖., .‖Y is a 2-norm on Y.

(ii) Let H be any one of the spaces Z(‖., .‖, ∆s
m), for Z = c0, c and `∞. We

define the following function ‖., .‖H on H ×H by

‖x, y‖H = 0, if x, y are linearly dependent,

=
ms∑
k=1

‖xk, z1‖X + sup
k
‖∆s

mxk, z1‖X , for every z1 ∈ X, if x, y are

linearly independent.

(3) Then ‖., .‖H is a 2-norm on Y.

Proof. (i) If x1, x2 are linearly dependent, then ‖x1, x2‖Y = 0. Conversely

assume ‖x1, x2‖Y = 0. Then using (2), we have

sup
k
‖∆s

(m)x
1
k, z1‖X = 0, for every z1 ∈ X.

This implies that

‖∆s
(m)x

1
k, z1‖ = 0, for every z1 ∈ X and k ≥ 1.

Hence we must have

∆s
(m)x

1
k = 0 for all k ≥ 1.

Let k = 1, then ∆s
(m)x

1
1 =

s∑
i=0

(−1)i
(
s
v

)
x1

1−mi = 0 and so x1
1 = 0, by putting

xi
1−mi = 0 for i = 1, . . . , s. Similarly taking k = 2, . . . , ms, we have x1

2 = · · · =
x1

ms = 0. Next let k = ms + 1, then ∆s
(m)x

1
ms+1 =

s∑
i=0

(−1)i
(
s
v

)
x1

1+ms−mi = 0.
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Since x1
1 = x1

2 = · · · = x1
ms = 0, we have x1

ms+1 = 0. Proceeding in this way

we can conclude that x1
k = 0, for all k ≥ 1. Hence x1 = θ and so x1, x2 are

linearly dependent.

It is obvious that ‖x1, x2‖Y is invariant under permutation, since ‖x2, x1‖Y

= sup
k
‖z1, ∆s

(m)x
1
k‖X and ‖., .‖X is a 2-norm.

Let α ∈ R be any element. If αx1, x2 are linearly dependent then it is

obvious that

‖αx1, x2‖Y = |α|‖x1, x2‖Y .

Otherwise,

‖αx1, x2‖Y = sup
k
‖∆s

(m)αx1
k, z1‖X = |α| sup

k
‖∆s

(m)x
1
k, z1‖X = |α|‖x1, x2‖Y .

Lastly, let x1 = (x1
k) and y1 = (y1

k) ∈ Y . Then clearly

‖x1 + y1, x2‖Y ≤ ‖x1, x2‖Y + ‖y1, x2‖Y .

Thus we can conclude that ‖., .‖Y is a 2-norm on Y .

(ii) For this part we shall only show that ‖x1, x2‖H = 0 implies x1, x2 are

linearly dependent. Proof of other properties of 2-norm follow similarly with

that of part (i).

Let us assume that ‖x1, x2‖H = 0. Then using (3), for every z1 in X, we

have

(4)
ms∑

k=1

‖x1
k, z1‖X + sup

k
‖∆s

mx1
k, z1‖X = 0

We have
ms∑

k=1

‖x1
k, z1‖X = 0, for every z1 ∈ X.
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Hence

x1
k = 0, for k = 1, 2, . . . , ms.

Also we have from (4)

sup
k
‖∆s

mx1
k, z1‖X = 0 for every z1 ∈ X.

Hence we must have

∆s
mx1

k = 0, for each k ∈ N.

Let k = 1, then we have

(5) ∆s
mx1

1 =
s∑

v=0

(−1)v

(
s

v

)
x1

1+mv = 0

Also we have

(6) x1
k = 0, for k = 1 + mv, v = 1, 2, . . . s− 1.

Thus from (5) and (6), we have x1
1+ms = 0. Proceeding in this way inductively,

we have x1
k = 0, for each k ∈ N .

Hence x1 = θ and so x1, x2 are linearly dependent.

Theorem 3 Let Y be any one of the spaces Z(‖., .‖,∆s
(m)), for Z = c0, c and

`∞. We define the following function ‖.‖∞ on Y by

‖x‖∞ = 0, if x is linearly dependent,

= sup
k

max{‖∆s
(m)xk, bl‖X : l = 1, . . . , d}, where B = {b1, . . . , bd} is a

basis of X, if x is linearly independent.

(7) Then ‖.‖∞ is a norm on Y and we call this as derived norm on Y.

Proof. Proof is a routine verification and so omitted.
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Remark 1 Associated to the derived norm ‖.‖∞, we can define balls(open)

S(x, ε) centered at x and radius ε as follows:

S(x, ε) = {y : ‖x− y‖∞ < ε}.

Corollary 1 The spaces Z(‖., .‖,∆s
(m)), for Z = c0, c and `∞ are normed

linear spaces.

Theorem 4 If X is a 2-Banach space, then the spaces Z(‖., .‖, ∆s
(m)), for Z

= c0, c and `∞ are 2-Banach spaces under the 2-norm (2).

Proof. We give the proof only for the space `∞(‖., .‖, ∆s
(m)) and for other

spaces it will follow on applying similar arguments.

Let (xi) be any Cauchy sequence in `∞(‖., .‖, ∆s
(m)) and ε > 0 be given.

Then there exists a positive integer n0 such that

‖xi − xj , u1‖Y < ε, for all i, j ≥ n0 and for every u1.

Using the definition of 2-norm, we get

sup
k
‖∆s

(m)(x
i
k − xj

k), z1‖X < ε, for all i, j ≥ n0 and for every z1 ∈ X.

It follows that

‖∆s
(m)(x

i
k − xj

k), z1‖X < ε, for all i, j ≥ n0, k ∈ N and for every z1 ∈ X.

Hence (∆s
(m)x

i
k) is a Cauchy sequence in X for all k ∈ N and so convergent in

X for all k ∈ N , since X is a 2-Banach space. For simplicity, let

lim
i→∞

∆s
(m)x

i
k = yk, say, exists for each k ∈ N.

Taking k = 1, 2, . . . , ms, . . . we can easily conclude that

lim
i→∞

xi
k = xk, exists for each k ∈ N.
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Now for i, j ≥ n0, we have

sup
k
‖∆s

(m)(x
i
k − xj

k), z1‖X < ε, and for every z1 ∈ X.

Hence for every z1 in X, we have

sup
k
‖∆s

(m)(x
i
k − xk), z1‖X < ε, for all i ≥ n0 and as j →∞.

It follows that (xi−x) ∈ `∞(‖., .‖, ∆s
(m)) and `∞(‖., .‖, ∆s

(m)) is a linear space,

so we have x = xi − (xi − x) ∈ `∞(‖., .‖, ∆s
(m)). This completes the proof of

the theorem.

Theorem 5 Let Y be any one of the spaces Z(‖., .‖,∆s
(m)), for Z = c0, c and

`∞. Then (xi) converges to an x in Y in the 2-norm if and only if (xi) also

converges to x in the derived norm.

Proof. Let (xi) converges to x in Y in the 2-norm. Then

‖xi − x, u1‖Y → 0 as i →∞ for every u1.

Using (2), we get

sup
k
‖∆s

(m)(x
i
k − xk), z1‖X → 0 as i →∞ for every z1 ∈ X.

Hence for any basis {b1, b2, . . . , bd} of X, we have

sup
k

max{‖∆s
(m)(x

i
k − xk), bl‖X : l = 1, 2, . . . , d} → 0 as i →∞.

Thus it follows that

‖xi − x‖∞ → 0 as i →∞.

Hence (xi) converges to x in the derived norm.

Conversely assume (xi) converges to x in the derived norm. Then we have

‖xi − x‖∞ → 0 as i →∞.
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Hence using (7), we get

sup
k

max{‖∆s
(m)(x

i
k − xk), bl‖X : l = 1, 2, . . . , d} → 0 as i →∞.

Therefore

sup
k
‖∆s

(m)(x
i
k − xk), bl‖X → 0 as i →∞, for each l = 1, . . . , d.

Let y be any element of Y . Then

‖xi − x, y‖Y = sup
k
‖∆s

(m)(x
i
k − xk), zl‖X

Since {b1, . . . , bd} is a basis for X, z1 can be written as

z1 = α1b1 + · · ·+ αdbd for some α1, . . . , αd ∈ R.

Now

‖xi − x, y‖Y = sup
k
‖∆s

(m)(x
i
k − xk), zl‖X

≤ |α1| sup
k
‖∆s

(m)(x
i
k − xk), bl‖X + · · ·+ |αd| sup

k
‖∆s

(m)(x
i
k − xk), bd‖X ,

for each i in N .

Thus it follows that

‖xi − x, y‖Y → 0 as i →∞ for every y ∈ Y.

Hence (xi) converges to x in Y in the 2-norm.

Corollary 2 Let Y be any one of the spaces Z(‖., .‖, ∆s
(m)), for Z = c0, c and

`∞. Then Y is complete with respect to the 2-norm if and only if it is complete

with respect to the derived norm.

Summarizing remark 1, corollary 1 and corollary 2, we have the following

result:
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Theorem 6 The spaces Z(‖., .‖, ∆s
(m)), for Z = c0, c and `∞ are normed

spaces and their topology agree with that generated by the derived norm ‖.‖∞.

Remark 2 We get similar results as those of Theorem 3, Corollary 1, The-

orem 4, Theorem 5, Corollary 2 and Theorem 6 for the spaces Z(‖., .‖, ∆s
m),

for Z = c0, c and `∞ also.

A 2-norm ‖., .‖1 on a vector space X is said to be equivalent to a 2-norm

‖., .‖2 on X if there are positive numbers A and B such that for all x, y ∈ X

we have

A‖x, y‖2 ≤ ‖x, y‖1 ≤ B‖x, y‖2.

This concept is motivated by the fact that equivalent norms on X define the

same topology for X.

Remark 3 It is obvious that any sequence x ∈ Z(‖., .‖,∆s
(m)) if and only if

x ∈ Z(‖., .‖,∆s
m), for Z = c0, c and `∞. Also it is clear that the two 2-norms

‖., .‖Y and ‖., .‖H defined by (2)and (3) are equivalent.

Let X and Y be linear 2-normed spaces and f : X → Y a mapping. We

call f an 2-isometry if

‖x1 − y1, x2 − y2‖ = ‖f(x1)− f(y1), f(x2)− f(y2)‖,

for all x1, x2, y1, y2 ∈ X.

Theorem 7 For Z = c0, c and `∞, the spaces Z(‖., .‖, ∆s
(m)) and Z(‖., .‖,∆s

m)

are 2-isometric with the spaces Z(‖., .‖).

Proof. Let us consider the mapping

F : Z(‖., .‖, ∆s
(m)) → Z(‖., .‖), defined by
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Fx = y = (∆s
(m)xk), for each x = (xk) ∈ Z(‖., .‖,∆s

(m)).

Then clearly F is linear. Since F is linear, to show F is a 2-isometry, it is

enough to show that

‖F (x1), F (x2)‖1 = ‖x1, x2‖Y , for every x1, x2 ∈ Z(‖., .‖, ∆s
(m)).

Now using the definition of 2-norm (2), without loss of generality we can write

‖x1, x2‖Y = sup
k
‖∆s

(m)x
1
k, z1‖X = ‖F (x1), F (x2)‖1,

where ‖., .‖1 is a 2-norm on Z(‖., .‖), which can be obtained from (2) by taking

s = 0.

In view of remark 3, we can define same mapping on the spaces Z(‖., .‖, ∆s
m)

and completes the proof.

For the next Theorem let Y to be any one of the spaces Z(‖., .‖, ∆s
(m)), for

Z = c0, c and `∞.

Theorem 8 (Fixed Point Theorem) Let Y be a 2-Banach space under the

2-norm (2), and T be a contractive mapping of Y into itself, that is, there

exists a constant C ∈ (0, 1) such that

‖Ty1 − Tz1, x2‖Y ≤ C‖y1 − z1, x2‖Y ,

for all y1, z1, x2 in Y. Then T has a unique fixed point in Y.

Proof. If we can show that T is also contractive with respect to derived norm,

then we are done by corollary 2 and the fixed point theorem for Banach spaces.

Now by hypothesis

‖Ty1 − Tz1, x2‖Y ≤ C‖y1 − z1, x2‖Y , for all y1, z1, x2 ∈ Y.



On some 2-Banach spaces 83

This implies that

sup
k
‖∆s

(m)(Ty1
k − Tz1

k), u1‖X ≤ C sup
k
‖∆s

(m)(y
1
k − z1

k), u1‖X , for every u1 ∈ X.

Then for a basis {e1, . . . , ed} of X, we get

sup
k
‖∆s

(m)(Ty1
k − Tz1

k), ei‖X ≤ C sup
k
‖∆s

(m)(y
1
k − z1

k), ei‖X ,

for all y1, z1 in Y and i = 1, . . . , d.

Thus

‖Ty1
k − Tz1

k‖∞ ≤ C‖y1
k − z1

k‖∞.

That is T is contractive with respect to derived norm. This completes the

proof.

Remark 4 We get the fixed point theorem for the spaces Z(‖., .‖, ∆s
m), for Z

= c0, c and `∞ as above.
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[2] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math.

Nachr. 28, 1963, 115-148.

[3] S. Gähler, Linear 2-normietre Räume, Math. Nachr. 28, 1965, 1-43.
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[6] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J.

Math. 4, 2006, 85-91.

[7] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, 1981,

169-176.

[8] B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Int.

Jour. of Sci. and Tech. 1, 2006, 11-14.

[9] B .C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized
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