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Abstract

The partition function of a thermodynamic system is an important
tool in Statistical Physics which is, however, analytically not accessible
for some models of interest, in particular for the hard disk fluid. We ob-
tain an equation of state for this fluid by statistical evaluation of a long
term computer experiment. An approximation of the partition function
based on the equation of state is proposed. To test the quality of the ap-
proximation, we simulate an adiabatic compression process and observe
the behavior of entropy.
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1 Introduction

The partition function plays an important role in the context of microscopic
modelling of thermodynamic systems. From the partition function values of
parameters describing a given system can be calculated. In particular the
equation of state interrelating pressure, temperature and density of a fluid
can be computed, and, moreover, the functional dependence of entropy on
temperature and density can be specified.
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In typical models of interest, however, the exact determination of the par-
tition function is impossible entailing that approximations are desirable; this is
also the case for the hard disk fluid where analytical approximation is available
essentially only for the dilute range of density (ideal gas).

The aim of the present contribution is the establishment of an approxi-
mation of the partition function for the hard disk fluid in the range [0, 0.80]
of relative density based on an equation of state which is accessible through
statistical evaluation of molecular-kinetic long term computer experiments.

The paper is organized as follows. In Section 2 we present a computer
experiment which enables us to estimate the pressure of the hard disk fluid
under arbitrary thermodynamic conditions; the repetition of this experiment
under varying fluid densities yields a data set whose statistical evaluation leads
to the establishment of an (approximative) equation of state. In Section 3 an
approximation of the partition function is derived by utilizing thermodynamic
formalism and the equation of state obtained in Section 2. To explore the
quality of this approximation we base on it to introduce an estimator for the
entropy. We carry out a computer experiment imitating the adiabatic com-
pression of the fluid by a piston and observe the behavior of entropy estimates
(Section 4). It turns out that the entropy of the fluid is approximatively
constant during the compression process, which confirms the applicability of
thermodynamic postulates to the model fluid and underlines the quality of the
proposed approximation of the partition function.

2 The computer experiment and its evaluation

Let us consider a rectangular container

C := [−a1, a1]× [−a2, a2] ⊂ R2

where

(1) a2 =
√

3
2
· a1.

We inject N = 3691 hard disks of mass m = N−1
A and radius r = 10−10m into

C where NA = 6.022 · 1026kg−1 denotes the modified Avogadro number.
To impose the temperature T = 300K on this thermodynamic system we

put

σ2 :=
kB · T

m
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where kB = 1.38 · 10−23J/K denotes Boltzmann constant; we generate the
initial velocities v(1)(0), ..., v(N)(0) ∈ R2 of the disks according to the normal
distribution N(0, σ2 · I2) with mean vector 0 and covariance matrix σ2 · I2

where I2 denotes the 2 × 2-identity matrix. This initial state complies with
Maxwell hypothesis, cf. Moeschlin, Grycko (2006), chap. 1.

Newtonian dynamics is imposed on the system of N hard disks confined
to container C enabling us to determine the positions x(1)(t), ..., x(N)(t) ∈ C

and velocities v(1)(t), . . . , v(N)(t) ∈ R2 of the disks at any time t ≥ 0.

During the temporal evolution of the state of the system, reflections of
disks at the boundary of C occur and can be registered to estimate pressure
according to Moeschlin, Grycko (2006), chap. 5.

We distinguish between fluid density

% =
N

V

and its relative density

%r = 2
√

3 · r2 · %

where

V = 2
√

3 · a2
1 and 2

√
3 · r2

denote the volume (area) of C and the inverse density of close packing of disks,
respectively.

The experiment is repeated 321 times for different volumes of container
C covering the range [10−3, 0.85] of relative density of the fluid. At each
repetition 3 · 104 reflections are involved in the pressure estimation process.
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Fig. 1: Estimated pressure as function of density
.

In Figure 1 the adjusted relative densities are graphed on the horizontal axis
versus the estimated pressure values on the vertical axis.

For the statistical approximation of pressure as function of thermodynamic
parameters (temperature T and density %) the following ansatz is considered:

(2) p(%, T ) =
%kBT

1− %r
· (1 +

3∑

j=1

Aj · (2
√

3 · r2 · %)j ).

(2) is motivated by the principle of corresponding states entailing a linear
dependence between p and T ; the denominator in (2) is justified by the fact
that a singularity is expected at the relative density %r = 1 (close packing).
Note that (2) approximates the equation of state of the ideal gas in the dilute
range of fluid density.

The least-squares estimates of coefficients A1, A2, A3 based on computer



On an approximation of the partition function... 143

experimental data are given by

(3) Â1 = 0.77843 Â2 = 0.83254 Â3 = 0.47933.

The fitted curve is also visualized in Figure 1. The average relative error based
on 315 data points and the model curve attains 2.5%. The significant deviation
between the last six data points and the fitted curve can be viewed as statistical
evidence for a fluid/solid phase transition (cf. Grycko (2008)); therefore the
last six data points are not involved in the computation of estimates (3).

3 The approximation

A momentary microstate of the fluid confined to container C is represented
by

(4) (x; u) := (x(1), . . . , x(N);u(1), . . . , u(N)) ∈ CN × R2N

where x(j) ∈ C denotes the position and u(j) ∈ R2 the momentum of the jth

disk. Tuple x = (x(1), . . . , x(N)) is called configuration. The potential energy
of configuration x is given by

(5) Ep(x) =
∑

i<j

Φ(|x(i) − x(j)|)

where |.| denotes the Euclidean norm on R2 and Φ is defined according to

(6) Φ(s) =

{
0 if s ≥ 2r

∞ if s < 2r.

Φ obviously penalizes overlapping of disks.
The partition function for the hard disk fluid is defined by

(7) Z(N, V, T ) :=
1

N ! · h2N
·

∫

CN×R2N

exp
(
− 1

kBT
·H(x; u)

)
dxdu

where h and V denote Planck constant and volume of container C, respectively.
Hamiltonian

H : CN × R2N → R
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in (7) is defined by

(8) H(x; u) :=
N∑

j=1

1
2m

< u(j), u(j) > +
∑

i<j

Φ(|x(i) − x(j)|).

Integration w.r.t. variable u in (7) is related to handling multivariate Gaussian
distributions and can be performed exactly; integration w.r.t. variable x is
hard such that an approximation of Z is desirable.

On the other hand, for the case of radius r = 0 of the hard disks (ideal
gas), the integral in (7) can be computed exactly yielding

(9) Ẑ(N, V, T ) =
V N

N ! · h2N
· (2πmkBT )N .

Ẑ can be viewed as an approximation of Z if volume V of container C is
sufficiently large.

Now, state equation (2) can be rewritten as

(10) p(N,V, T ) =
NkBT

V −Nγ(r)
·

1 +

3∑

j=1

Aj · γ(r)j ·
(

N

V

)j



where γ(r) := 2
√

3r2. According to the thermodynamic formalism (cf. Greiner
et al. (1995), p. 167) pressure can be expressed by

(11) p(N, V, T ) = −∂F

∂V

where

(12) F (N,V, T ) := −kBT ln(Z(N, V, T ))

denotes the free energy of a system.
To approximate F for the hard disk fluid, we consider a large container

of volume V0; based on (9), F (N, V0, T ) can be approximated by F̂ (N, V0, T )
where

F̂ (N, V, T ) := −kBT ln(Ẑ(N,V, T )).

Combining (9) and (11) leads to the approximation

(13) FV0(N, V, T ) = F̂ (N, V0, T )−
V∫

V0

p(N, v, T )dv
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of free energy where the subscript indicates that approximation FV0 depends
on the choice of the reference container of volume V0; since approximation (9)
improves with increasing V , we propose the approximation

(14) F∞(N, V, T ) := lim
V0→∞

FV0(N, V, T )

which can be explicitly computed because the integral in (13) is exactly solv-
able for the pressure function given in (10). We obtain

(15) F∞(N,V, T ) = −NkBT ·
(

1 + ln
(

2πmkBT

h2

)
+ ln(V/N − γ(r))+

+As ln(1−Nγ(r)/V ) + A23Nγ(r)/V + A3(Nγ(r))2/(2V 2)
)

where
As := A1 + A2 + A3 and A23 := A2 + A3.

(15) leads in view of (12) to the announced approximation

(16) Z(N, V, T ) ≈ exp
(
−F∞(N, V, T )

kBT

)

of the partition function for the hard disk fluid.

4 The Duma Test

According to the thermodynamic formalism, entropy S of a system can be
computed by

(17) S(N, V, T ) = −∂F

∂T

where F denotes the free energy as function of parameters N, V and T . Ap-
proximation F∞ given in (15) for the free energy of the hard disk fluid entails
the approximation

(18) S∞(N,V, T ) := −∂F∞
∂T

for the entropy of this fluid.
Let us consider a rectangular tube

Θ := [0, L(0)]× [−b, b] ⊂ R2
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filled with N hard disks of radius r > 0 and mass m > 0 where L(0) denotes
the initial length of the tube. Analogously to the experiment described in
Section 2, an arbitrary initial temperature T (0) of the fluid can be adjusted.
Combining (18) and (15) yields the approximation

Ŝ(0) := S∞(N, V, T (0))

of the initial entropy of the fluid in the tube.
Now we propose a computer experimental test for the quality of a given

approximation of the partition function of a thermodynamic system. The
name of the test has been settled on the occasion of the 65th birthday of
Professor Andrei Duma from Hagen.

The test idea is based on the thermodynamic postulate of entropy invari-
ance under adiabatic compression of a fluid (cf. Greiner et al. (1995)). We
exemplify the test idea for the case of the approximation given in Section 3.

Let us interpret the right edge of Θ as a piston which is initially described
by {L(0)} × [−b, b]. If the piston moves in horizontal direction with velocity
v, then it describes the trajectory

({L(t)} × [−b, b])t≥0

where L(t) = L(0) − vt for t ≥ 0. The movement of the piston entails a
compression of the fluid whose temperature at time t can be estimated by

(19) T̂ (t) :=
m

2NkB
·

N∑

j=1

< v(j)(t), v(j)(t) >

if the momentary velocities v(1)(t), . . . , v(N)(t) of the disks are computed,
cf. Moeschlin, Grycko (2006), chap. 1.

Combining (18), (19) and (15) suggests the esimator

(20) Ŝ(t) := −∂F∞
∂T

(N, V (t), T̂ (t))

for the entropy of the compressed fluid where V (t) := 2L(t)b is the volume of
the tube at the time point t ≥ 0.

The compression process together with its statistical evaluation has been
realized in a computer experiment.



On an approximation of the partition function... 147

Fig. 2: Adiabatic compression and entropy
.

Figure 2 presents a typical picture generated during the experiment. The
tube with the piston is visualized. In the diagram the abscissa corresponds
to the volume V (t) of the tube and the ordinate to the entropy estimates
obtained according to (20) at appropriate time points t1, t2, . . .; the estimates
are represented as dots. The ordinate of the horizontal line in the diagram is
the initial estimate Ŝ(0) of entropy.

Since entropy estimates Ŝ(t1), Ŝ(t2), . . . are close to the initial estimate
Ŝ(0) during the whole compression process, the test confirms the invariance of
entropy under adiabatic compression of the hard disk fluid, which underlines
the quality of approximation (15) involved in the construction of estimator Ŝ.
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