Common fixed point theorems for subcompatible D-maps of integral type ${ }^{1}$

H. Bouhadjera, A. Djoudi

Abstract

Some common fixed point theorems for two pairs of subcompatible single and multivalued D-maps in metric spaces are obtained extending some results of single-valued maps of Jungck and Rhoades [9].

2010 Mathematics Subject Classification: 47H10, 54H25.
Key words and phrases: Weakly compatible maps, Subcompatible maps, Occasionally weakly compatible maps, Integral type, D-maps, Common fixed point theorems.

1 Introduction

To generalize commuting maps, Sessa [10] introduced the notion of weakly commuting maps.

Later on, Jungck generalized commuting and weakly commuting maps, first to compatible maps [6] and then to weakly compatible maps [7].

And in 1998, the same author with Rhoades [8] extended the concept of weakly compatible maps to the setting of single and multivalued maps by giving the notion of subcompatible maps.

Recently in 2008, Al-Thagafi and Shahzad [2] introduced the concept of occasionally weakly compatible maps (owc) which is a proper generalization of nontrivial weakly compatible maps which do have a coincidence point.

[^0]
2 Preliminaries

Throughout this paper \mathcal{X} stands for a metric with the metric d and $B(\mathcal{X})$ denotes the family of all nonempty, bounded subsets of \mathcal{X}. Define for all A, B in $B(\mathcal{X})$

$$
\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}
$$

If $A=\{a\}$, we write $\delta(A, B)=\delta(a, B)$ and $\delta(A, B)=d(a, b)$ if $A=\{a\}$ and $B=\{b\}$. For all A, B, C in $B(\mathcal{X})$, the definition of δ yields the following properties:

$$
\begin{aligned}
\delta(A, B) & =\delta(B, A) \geq 0 \\
\delta(A, B) & \leq \delta(A, C)+\delta(C, B) \\
\delta(A, A) & =\operatorname{diam} A \\
\delta(A, B) & =0 \Leftrightarrow A=B=\{a\}
\end{aligned}
$$

Definition 1 ([4]) A sequence $\left\{A_{n}\right\}$ of nonempty subsets of \mathcal{X} is said to be convergent towards a subset A of \mathcal{X} if,
(i) each point a of A is a limit of a convergent sequence $\left\{a_{n}\right\}$, where $a_{n} \in A_{n}$ for $n \in \mathbb{N}$,
(ii) for arbitrary $\epsilon>0$, there is an integer m such that $n>m, A_{n} \subseteq A_{\epsilon}$. $A_{\epsilon}=\{x \in \mathcal{X}: \exists a \in A, a$ depending on x and $d(x, a)<\epsilon\}$. A is then said to be the limit of the sequence $\left\{A_{n}\right\}$.

Lemma 1 ([4]) Let $\left\{A_{n}\right\},\left\{B_{n}\right\}$ be sequences in $B(\mathcal{X})$ converging respectively to A and B in $B(\mathcal{X})$, then the sequence of numbers $\left\{\delta\left(A_{n}, B_{n}\right)\right\}$ converges to $\delta(A, B)$.

Lemma 2 ([5]) Let $\left\{A_{n}\right\}$ be a sequence in $B(\mathcal{X})$ and y be a point in \mathcal{X} such that $\delta\left(A_{n}, y\right) \rightarrow 0$. Then the sequence $\left\{A_{n}\right\}$ converges to the set $\{y\}$ in $B(\mathcal{X})$.

Definition 2 ([10]) Self-maps f and g of a metric space (\mathcal{X}, d) are said to be weakly commuting if, for all $x \in \mathcal{X}$

$$
d(f g x, g f x) \leq d(g x, f x)
$$

Definition 3 ([6]) Self-maps f and g of a metric space (\mathcal{X}, d) are called compatible if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$.

Definition 4 ([7]) Two maps $f, g: \mathcal{X} \rightarrow \mathcal{X}$ are said to be weakly compatible if they commute at their coincidence points.

Definition 5 ([8]) Maps $f: \mathcal{X} \rightarrow \mathcal{X}$ and $F: \mathcal{X} \rightarrow B(\mathcal{X})$ are said to be subcompatible if they commute at coincidence points; that is,

$$
\{t \in \mathcal{X} / F t=\{f t\}\} \subseteq\{t \in \mathcal{X} / F f t=f F t\}
$$

Definition 6 ([2]) Two self-maps f and g of a set \mathcal{X} are owc if and only if there is a point $t \in \mathcal{X}$ which is a coincidence point of f and g at which f and g commute.

In their paper [3], Djoudi and Khemis gave the notion of D-maps which extended the notion of property (E.A) given by Aamri and El Moutawakil [1].

Definition 7 ([3]) Maps $f: \mathcal{X} \rightarrow \mathcal{X}$ and $F: \mathcal{X} \rightarrow B(\mathcal{X})$ are said to be D-maps iff there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that for some $t \in \mathcal{X}$

$$
\lim _{n \rightarrow \infty} f x_{n}=t \text { and } \lim _{n \rightarrow \infty} F x_{n}=\{t\}
$$

Our objective here is to prove some common fixed point theorems for two pairs of subcompatible single and multivalued D-maps satisfying contractive condition of integral type in metric spaces. These results extend the results of Jungck and Rhoades [9].

For our main results we need the following:
Let Ψ be the set of all continuous maps $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that
$\left(\psi_{1}\right):$ for all u, v in \mathbb{R}^{+}, if

$$
\begin{aligned}
& \left(\psi_{a}\right): \psi(u, v, v, u, u+v, 0) \leq 0 \text { or } \\
& \left(\psi_{b}\right): \psi(u, v, u, v, 0, u+v) \leq 0
\end{aligned}
$$

we have $u \leq v$
$\left(\psi_{2}\right): \varphi(u, u, 0,0, u, u)>0$ for all $u>0$,
next, let Φ be the set of all maps $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that φ is Lebesgueintegrable which is summable nonnegative and satisfies $\int_{0}^{\epsilon} \varphi(t) d t>0$ for each $\epsilon>0$,
and let \mathcal{F} be the set of all continuous maps $\digamma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $\digamma(t)=0$ iff $t=0$.

3 Main results

Theorem 1 Let (\mathcal{X}, d) be a metric space and let $f, g: \mathcal{X} \rightarrow \mathcal{X} ; F, G: \mathcal{X} \rightarrow$ $B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that
(1) f and g are surjective,

$$
\begin{align*}
& \psi\left(\int_{0}^{\delta(F x, G y)} \varphi(t) d t, \int_{0}^{d(f x, g y)} \varphi(t) d t, \int_{0}^{\delta(f x, F x)} \varphi(t) d t\right. \tag{2}\\
& \left.\int_{0}^{\delta(g y, G y)} \varphi(t) d t, \int_{0}^{\delta(f x, G y)} \varphi(t) d t, \int_{0}^{\delta(g y, F x)} \varphi(t) d t\right) \leq 0
\end{align*}
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi$ and $\varphi \in \Phi$. If either
(3) f and F are subcompatible D-maps; g and G are subcompatible, or
$\left(3^{\prime}\right) g$ and G are subcompatible D-maps; f and F are subcompatible.
Then, f, g, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $F t=G t=\{f t\}=\{g t\}=\{t\}$.

Proof. Suppose that f and F are D-maps, then, there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=t$ and $\lim _{n \rightarrow \infty} F x_{n}=\{t\}$ for some $t \in \mathcal{X}$. By vertue of condition (1) there are two points u and v in \mathcal{X} such that $t=f u=g v$. We show that $G v=\{g v\}$. Indeed, by inequality (2) we have

$$
\begin{aligned}
& \psi\left(\int_{0}^{\delta\left(F x_{n}, G v\right)} \varphi(t) d t, \int_{0}^{d\left(f x_{n}, g v\right)} \varphi(t) d t, \int_{0}^{\delta\left(f x_{n}, F x_{n}\right)} \varphi(t) d t\right. \\
& \left.\int_{0}^{\delta(g v, G v)} \varphi(t) d t, \int_{0}^{\delta\left(f x_{n}, G v\right)} \varphi(t) d t, \int_{0}^{\delta\left(g v, F x_{n}\right)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

Since ψ is continuous, we get at infinity

$$
\psi\left(\int_{0}^{\delta(g v, G v)} \varphi(t) d t, 0,0, \int_{0}^{\delta(g v, G v)} \varphi(t) d t, \int_{0}^{\delta(g v, G v)} \varphi(t) d t, 0\right) \leq 0
$$

which from $\left(\psi_{a}\right)$, gives $\int_{0}^{\delta(g v, G v)} \varphi(t) d t \leq 0$, and hence $\delta(g v, G v)=0$, which implies that $G v=\{g v\}=\{t\}$. Since the pair (g, G) is subcompatible, then, $G g v=g G v$; i.e., $G t=\{g t\}$.

We claim that $G t=\{g t\}=\{t\}$. If not, then condition (2) implies that

$$
\begin{aligned}
& \psi\left(\int_{0}^{\delta\left(F x_{n}, G t\right)} \varphi(t) d t, \int_{0}^{d\left(f x_{n}, g t\right)} \varphi(t) d t, \int_{0}^{\delta\left(f x_{n}, F x_{n}\right)} \varphi(t) d t\right. \\
& \left.\int_{0}^{\delta(g t, G t)} \varphi(t) d t, \int_{0}^{\delta\left(f x_{n}, G t\right)} \varphi(t) d t, \int_{0}^{\delta\left(g t, F x_{n}\right)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

At infinity we get
$\psi\left(\int_{0}^{d(t, g t)} \varphi(t) d t, \int_{0}^{d(t, g t)} \varphi(t) d t, 0,0, \int_{0}^{d(t, g t)} \varphi(t) d t, \int_{0}^{d(g t, t)} \varphi(t) d t\right) \leq 0$
which contradicts $\left(\psi_{2}\right)$. Thus, $\int_{0}^{d(t, g t)} \varphi(t) d t=0$, which implies that $\{g t\}=$ $\{t\}=G t$.
Next, we show that $F u=\{f u\}=\{t\}$. Suppose not. Then inequality (2) gives

$$
\begin{aligned}
& \psi\left(\int_{0}^{\delta(F u, G t)} \varphi(t) d t, \int_{0}^{d(f u, g t)} \varphi(t) d t, \int_{0}^{\delta(f u, F u)} \varphi(t) d t\right. \\
& \left.\int_{0}^{\delta(g t, G t)} \varphi(t) d t, \int_{0}^{\delta(f u, G t)} \varphi(t) d t, \int_{0}^{\delta(g t, F u)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

that is,

$$
\psi\left(\int_{0}^{\delta(F u, t)} \varphi(t) d t, 0, \int_{0}^{\delta(t, F u)} \varphi(t) d t, 0,0, \int_{0}^{\delta(t, F u)} \varphi(t) d t\right) \leq 0
$$

which implies by $\left(\psi_{b}\right)$ that $\int_{0}^{\delta(F u, t)} \varphi(t) d t \leq 0$ and hence $F u=\{t\}=\{f u\}$.
Since f and F are subcompatible, then, $F f u=f F u$; i.e., $F t=\{f t\}$.
Then, the use of (2) gives

$$
\begin{aligned}
& \psi\left(\int_{0}^{\delta(F t, G t)} \varphi(t) d t, \int_{0}^{d(f t, g t)} \varphi(t) d t, \int_{0}^{\delta(f t, F t)} \varphi(t) d t\right. \\
& \left.\int_{0}^{\delta(g t, G t)} \varphi(t) d t, \int_{0}^{\delta(f t, G t)} \varphi(t) d t, \int_{0}^{\delta(g t, F t)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

i.e.,
$\psi\left(\int_{0}^{d(f t, t)} \varphi(t) d t, \int_{0}^{d(f t, t)} \varphi(t) d t, 0,0, \int_{0}^{d(f t, t)} \varphi(t) d t, \int_{0}^{d(t, f t)} \varphi(t) d t\right) \leq 0$
contradicts $\left(\psi_{2}\right)$. Hence, $\{f t\}=\{t\}=F t$. Therefore t is a common fixed point of maps f, g, F and G.
Now, suppose that there exists another common fixed point t^{\prime} such that $t^{\prime} \neq t$. Then, using inequality (2) we obtain

$$
\begin{aligned}
& \psi\left(\int_{0}^{\delta\left(F t, G t^{\prime}\right)} \varphi(t) d t, \int_{0}^{d\left(f t, g t^{\prime}\right)} \varphi(t) d t, \int_{0}^{\delta(f t, F t)} \varphi(t) d t\right. \\
& \left.\int_{0}^{\delta\left(g t^{\prime}, G t^{\prime}\right)} \varphi(t) d t, \int_{0}^{\delta\left(f t, G t^{\prime}\right)} \varphi(t) d t, \int_{0}^{\delta\left(g t^{\prime}, F t\right)} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{d\left(t, t^{\prime}\right)} \varphi(t) d t, \int_{0}^{d\left(t, t^{\prime}\right)} \varphi(t) d t, 0,0, \int_{0}^{d\left(t, t^{\prime}\right)} \varphi(t) d t, \int_{0}^{d\left(t, t^{\prime}\right)} \varphi(t) d t\right) \\
& \leq 0
\end{aligned}
$$

which contradicts $\left(\psi_{2}\right)$. Thus, $t^{\prime}=t$.
The proof is similar by replacing (3) with $\left(3^{\prime}\right)$.
If we let in Theorem $1, f=g$ and $F=G$, then, we get the next corollary.
Corollary 1 Let (\mathcal{X}, d) be a metric space and let $f: \mathcal{X} \rightarrow \mathcal{X} ; F: \mathcal{X} \rightarrow B(\mathcal{X})$ be a single and a multivalued map, respectively. If
(1) f is surjective,
(2) $\quad \psi\left(\int_{0}^{\delta(F x, F y)} \varphi(t) d t, \int_{0}^{d(f x, f y)} \varphi(t) d t, \int_{0}^{\delta(f x, F x)} \varphi(t) d t\right.$,

$$
\left.\int_{0}^{\delta(f y, F y)} \varphi(t) d t, \int_{0}^{\delta(f x, F y)} \varphi(t) d t, \int_{0}^{\delta(f y, F x)} \varphi(t) d t\right) \leq 0
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi$ and $\varphi \in \Phi$,
(3) f and F are subcompatible D-maps.

Then, f and F have a unique common fixed point $t \in \mathcal{X}$ such that $F t=\{f t\}=$ $\{t\}$.

Now, if we put in Theorem $1, f=g$, then, we obtain the following result.
Corollary 2 Let (\mathcal{X}, d) be a metric space and let $f: \mathcal{X} \rightarrow \mathcal{X} ; F, G: \mathcal{X} \rightarrow$ $B(\mathcal{X})$ be maps satisfying the conditions
(1) f is surjective,

$$
\begin{align*}
& \psi\left(\int_{0}^{\delta(F x, G y)} \varphi(t) d t, \int_{0}^{d(f x, f y)} \varphi(t) d t, \int_{0}^{\delta(f x, F x)} \varphi(t) d t\right. \tag{2}\\
& \left.\int_{0}^{\delta(f y, G y)} \varphi(t) d t, \int_{0}^{\delta(f x, G y)} \varphi(t) d t, \int_{0}^{\delta(f y, F x)} \varphi(t) d t\right) \leq 0
\end{align*}
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi$ and $\varphi \in \Phi$. If either
(3) f and F are subcompatible D-maps; f and G are subcompatible, or
$\left(3^{\prime}\right) f$ and G are subcompatible D-maps; f and F are subcompatible.
Then, f, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $F t=$ $G t=\{f t\}=\{t\}$.

Using recurrence on n, we obtain the following result.
Theorem 2 Let (\mathcal{X}, d) be a metric space and let $f, g: \mathcal{X} \rightarrow \mathcal{X} ; F_{n}: \mathcal{X} \rightarrow$ $B(\mathcal{X}), n=1,2, \ldots$ be maps such that
(1) f and g are surjective,

$$
\begin{align*}
& \psi\left(\int_{0}^{\delta\left(F_{n} x, F_{n+1} y\right)} \varphi(t) d t, \int_{0}^{d(f x, g y)} \varphi(t) d t, \int_{0}^{\delta\left(f x, F_{n} x\right)} \varphi(t) d t\right. \tag{2}\\
& \left.\int_{0}^{\delta\left(g y, F_{n+1} y\right)} \varphi(t) d t, \int_{0}^{\delta\left(f x, F_{n+1} y\right)} \varphi(t) d t, \int_{0}^{\delta\left(g y, F_{n} x\right)} \varphi(t) d t\right) \leq 0
\end{align*}
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi$ and $\varphi \in \Phi$. If either
(3) f and F_{n} are subcompatible D-maps; g and F_{n+1} are subcompatible, or
$\left(3^{\prime}\right) g$ and F_{n+1} are subcompatible D-maps; f and F_{n} are subcompatible.
Then, there exists a unique point $t \in \mathcal{X}$ such that $F_{n} t=\{f t\}=\{g t\}=\{t\}$.
Now, we prove our second main theorem.
Theorem 3 Let (\mathcal{X}, d) be a metric space and let $f, g: \mathcal{X} \rightarrow \mathcal{X} ; F, G: \mathcal{X} \rightarrow$ $B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that
(a) $F(\mathcal{X}) \subseteq g(\mathcal{X})$ and $G(\mathcal{X}) \subseteq f(\mathcal{X})$,
(b) $\quad \psi\left(\int_{0}^{\digamma(\delta(F x, G y))} \varphi(t) d t, \int_{0}^{\digamma(d(f x, g y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, F x))} \varphi(t) d t\right.$,

$$
\left.\int_{0}^{\digamma(\delta(g y, G y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, G y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(g y, F x))} \varphi(t) d t\right) \leq 0
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi, \varphi \in \Phi$ and $\digamma \in \mathcal{F}$. If either
(c) f and F are subcompatible D-maps; g and G are subcompatible and $F(\mathcal{X})$ is closed, or
$\left(c^{\prime}\right) g$ and G are subcompatible D-maps; f and F are subcompatible and $G(\mathcal{X})$ is closed.
Then, f, g, F and G have a unique common fixed point $t \in \mathcal{X}$ such that $F t=G t=\{f t\}=\{g t\}=\{t\}$.

Proof. Suppose that g and G are D-maps, then, there is a sequence $\left\{y_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} g y_{n}=t$ and $\lim _{n \rightarrow \infty} G y_{n}=\{t\}$ for some $t \in \mathcal{X}$. Since $G(\mathcal{X})$ is closed and $G(\mathcal{X}) \subseteq f(\mathcal{X})$, then, there exists a point $u \in \mathcal{X}$ such that $f u=t$. First, we claim that $F u=\{f u\}=\{t\}$. If not, then, from (b),

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma\left(\delta\left(F u, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(d\left(f u, g y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma(\delta(f u, F u))} \varphi(t) d t\right. \\
& \left.\int_{0}^{\digamma\left(\delta\left(g y_{n}, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(f u, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(g y_{n}, F u\right)\right)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

Since ψ and \digamma are continuous, at infinity we get
$\psi\left(\int_{0}^{\digamma(\delta(F u, f u))} \varphi(t) d t, 0, \int_{0}^{F(\delta(f u, F u))} \varphi(t) d t, 0,0, \int_{0}^{F(\delta(f u, F u))} \varphi(t) d t\right) \leq 0$
which from $\left(\psi_{b}\right)$ gives $\int_{0}^{\digamma(\delta(F u, f u))} \varphi(t) d t \leq 0$ and therefore $\digamma(\delta(F u, f u))=0$ which implies that $F u=\{f u\}=\{t\}$. Since f and F are subcompatible, then, $F f u=f F u$; i.e., $F t=\{f t\}$.
Suppose that $f t \neq t$, then, from inequality (b),

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma\left(\delta\left(F t, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(d\left(f t, g y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma(\delta(f t, F t))} \varphi(t) d t\right. \\
& \left.\int_{0}^{\digamma\left(\delta\left(g y_{n}, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(f t, G y_{n}\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(g y_{n}, F t\right)\right)} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

At infinity we obtain

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma(d(f t, t))} \varphi(t) d t, \int_{0}^{\digamma(d(f t, t))} \varphi(t) d t, 0,0\right. \\
& \left.\int_{0}^{\digamma(d(f t, t))} \varphi(t) d t, \int_{0}^{\digamma(d(t, f t))} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

which contradicts $\left(\psi_{2}\right)$. Therefore $\int_{0}^{\digamma(d(f t, t))} \varphi(t) d t=0$ which implies that $\digamma(d(f t, t))=0$; i.e., $\{f t\}=\{t\}=F t$.
Since $F(\mathcal{X}) \subseteq g(\mathcal{X})$, there exists an element $v \in \mathcal{X}$ such that $g v=t$. We claim that $G v=\{g v\}=\{t\}$. If not, then, using condition (b) we have

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma(\delta(F t, G v))} \varphi(t) d t, \int_{0}^{\digamma(d(f t, g v))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f t, F t))} \varphi(t) d t\right. \\
& \left.\int_{0}^{\digamma(\delta(g v, G v))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f t, G v))} \varphi(t) d t, \int_{0}^{\digamma(\delta(g v, F t))} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{\digamma(\delta(t, G v))} \varphi(t) d t, 0,0, \int_{0}^{\digamma(\delta(t, G v))} \varphi(t) d t, \int_{0}^{\digamma(\delta(t, G v))} \varphi(t) d t, 0\right) \leq 0
\end{aligned}
$$

which from $\left(\psi_{a}\right)$ gives $\int_{0}^{\digamma(\delta(t, G v))} \varphi(t) d t=0$ and hence $\digamma(\delta(t, G v))=0$ which implies that $G v=\{t\}=\{g v\}$. Since the pair (G, g) is subcompatible, then, $G g v=g G v$; i.e., $G t=\{g t\}$.
Suppose that $g t \neq t$. Then, by (b) we have

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma(\delta(F t, G t))} \varphi(t) d t, \int_{0}^{\digamma(d(f t, g t))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f t, F t))} \varphi(t) d t\right. \\
& \left.\int_{0}^{\digamma(\delta(g t, G t))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f t, G t))} \varphi(t) d t, \int_{0}^{\digamma(\delta(g t, F t))} \varphi(t) d t\right) \\
& =\psi\left(\int_{0}^{\digamma(d(t, g t))} \varphi(t) d t, \int_{0}^{\digamma(d(t, g t))} \varphi(t) d t, 0,0\right. \\
& \left.\int_{0}^{\digamma(d(t, g t))} \varphi(t) d t, \int_{0}^{\digamma(d(g t, t))} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

contradicts $\left(\psi_{2}\right)$. Therefore $\int_{0}^{\digamma(d(t, g t))} \varphi(t) d t=0$ which implies that $\digamma(d(t, g t))=$ 0 ; i.e., $\{g t\}=\{t\}=G t$, and t is a common fixed point of f, g, F and G.
The uniqueness of the common fixed point follows easily from condition (b). The proof is thus completed.
The proof is similar by replacing $\left(c^{\prime}\right)$ with (c).

Corollary 3 Let (\mathcal{X}, d) be a metric space and let $f: \mathcal{X} \rightarrow \mathcal{X} ; F: \mathcal{X} \rightarrow B(\mathcal{X})$ be a single and a multivalued map, respectively. Suppose that
(a) $F(\mathcal{X}) \subseteq f(\mathcal{X})$,
(b)

$$
\begin{aligned}
& \psi\left(\int_{0}^{\digamma(\delta(F x, F y))} \varphi(t) d t, \int_{0}^{\digamma(d(f x, f y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, F x))} \varphi(t) d t\right. \\
& \left.\int_{0}^{F(\delta(f y, F y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, F y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f y, F x))} \varphi(t) d t\right) \leq 0
\end{aligned}
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi, \varphi \in \Phi$ and $\digamma \in \mathcal{F}$. If f and F are subcompatible D-maps and $F(\mathcal{X})$ is closed, then, f and F have a unique common fixed point $t \in \mathcal{X}$ such that $F t=\{f t\}=\{t\}$.

Corollary 4 Let (\mathcal{X}, d) be a metric space and let $f: \mathcal{X} \rightarrow \mathcal{X} ; F, G: \mathcal{X} \rightarrow$ $B(\mathcal{X})$ be maps. If
(a) $F(\mathcal{X}) \subseteq f(\mathcal{X})$ and $G(\mathcal{X}) \subseteq f(\mathcal{X})$,
(b) $\quad \psi\left(\int_{0}^{\digamma(\delta(F x, G y))} \varphi(t) d t, \int_{0}^{\digamma(d(f x, f y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, F x))} \varphi(t) d t\right.$,

$$
\left.\int_{0}^{\digamma(\delta(f y, G y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f x, G y))} \varphi(t) d t, \int_{0}^{\digamma(\delta(f y, F x))} \varphi(t) d t\right) \leq 0
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi, \varphi \in \Phi$ and $\digamma \in \mathcal{F}$. If either
(c) f and F are subcompatible D-maps; f and G are subcompatible and $F(\mathcal{X})$ is closed, or
$\left(c^{\prime}\right) f$ and G are subcompatible D-maps; f and F are subcompatible and $G(\mathcal{X})$ is closed.
Then, there is a unique point $t \in \mathcal{X}$ such that $F t=G t=\{f t\}=\{t\}$.
By recurrence on n, we get the next result.
Theorem 4 Let (\mathcal{X}, d) be a metric space and let $f, g: \mathcal{X} \rightarrow \mathcal{X} ; F_{n}: \mathcal{X} \rightarrow$ $B(\mathcal{X})$ be single and multivalued maps, respectively. Suppose that
(a) $F_{n}(\mathcal{X}) \subseteq g(\mathcal{X})$ and $F_{n+1}(\mathcal{X}) \subseteq f(\mathcal{X})$,
(b) $\quad \psi\left(\int_{0}^{\digamma\left(\delta\left(F_{n} x, F_{n+1} y\right)\right)} \varphi(t) d t, \int_{0}^{\digamma(d(f x, g y))} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(f x, F_{n} x\right)\right)} \varphi(t) d t\right.$,

$$
\left.\int_{0}^{\digamma\left(\delta\left(g y, F_{n+1} y\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(f x, F_{n+1} y\right)\right)} \varphi(t) d t, \int_{0}^{\digamma\left(\delta\left(g y, F_{n} x\right)\right)} \varphi(t) d t\right) \leq 0
$$

for all x, y in \mathcal{X}, where $\psi \in \Psi, \varphi \in \Phi, \digamma \in \mathcal{F}$ and $n \in \mathbb{N}^{*}=\{1,2, \ldots\}$. If either
(c) f and F_{n} are subcompatible D-maps; g and F_{n+1} are subcompatible and $F_{n}(\mathcal{X})$ is closed, or
$\left(c^{\prime}\right) g$ and F_{n+1} are subcompatible D-maps; f and F_{n} are subcompatible and $F_{n+1}(\mathcal{X})$ is closed.
Then, there exists a unique point t in \mathcal{X} such that $F_{n} t=\{f t\}=\{g t\}=\{t\}$.

References

[1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(1), 2002, 181-188.
[2] M.A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sin. (Engl. Ser.), 24(5), 2008, 867-876.
[3] A. Djoudi and R. Khemis, Fixed points for set and single valued maps without continuity, Demonstratio Mathematica Vol., XXXVIII, no. 3, 2005, 739-751.
[4] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostock. Math. Kolloq., no. 18, 1981, 69-77.
[5] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungar., 20(3), 207-218.
[6] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(4), 1986, 771-779.
[7] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4(2), 1996, 199-215.
[8] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3), 1998, 227-238.
[9] G. Jungck and B.E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2), 2006, 287-296.
[10] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), 32(46), 1982, 149-153.

Hakima Bouhadjera

Laboratoire de Mathématiques Appliquées
Faculté des Sciences
Université Badji Mokhtar d'Annaba, B.P. 12, 23000, Annaba, Algérie
e-mail: b_hakima2000@yahoo.fr

Ahcène Djoudi

Laboratoire de Mathématiques Appliquées
Faculté des Sciences
Université Badji Mokhtar d'Annaba, B.P. 12, 23000, Annaba, Algérie
e-mail: adjoudi@yahoo.com

[^0]: ${ }^{1}$ Received 23 February, 2009
 Accepted for publication (in revised form) 25 March, 2009

