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SINGULAR INTEGRAL OPERATORS ON MANIFOLDS WITH A
BOUNDARY

R. KAPANADZE

ABSTRACT. This paper deals with singular integral operators that are
bounded, completely continuous, and Noetherian on manifolds with
a boundary in weighted Holder spaces.

We shall investigate the matrix singular operator

Alu)(z) = a(z)u(z) + / o 2 e — g mu(y)dy,

D |z -y
reD, DcCR™,

in weighted Holder spaces and develop the results obtained in [1] for one-
dimensional singular operators and in [2-8] for multidimensional singular
operators in Lebesgue spaces.

This paper consists of two sections. In Section I we shall prove the
theorems of integral operators that are bounded and completely continuous
in Holder spaces with weight. Section IT will contain the proof of the theorem
of factorization of matrix-functions and present the theorem of singular
operators that are Noetherian in weighted spaces.

1. Let R™ (m > 2) be an m-dimensional Euclidean space, x = (1, ..., Z),
y = (Y1, ..., Yym) be points of the space R™,

lis 1
|x|:(2x§)2, r={z: zeR™, a, =0},
i=1
RT ={z: 2 € R", z,, >0}, 2’ =(21,...,2m_1),

B(z,a) ={y: y e R™, |y — 2| <a},
S(z,a)={y: yeR™, |y —z|=a}.
Definition 1. A function u defined on R™\I' belongs to the space
HY 4R™T) (0<v,a<1,2>0 a+f<m)if
(i) Yz €R™T |u(@)| < clom|™(1+]a]) 7",
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1
(ii) Vx e R™\I', Vy € B(x, §|xm|)

[u(@) = u(y)] < clam| =T 1+ |2)) Pl —yl”.

The norm in the space H} 5(R™\I') is defined by the equality

[[ull = P (1 + )7 ul@)] +

z€R

w(z) —u
+ sup |20 |*T7 (1 + |x\)5|()75y)|
z€R™\I |z -yl
yEB(z, % |Tm|)

The space H}, 5(RY') is defined similarly.
Note that if y € B(z, §|%,|), then

<Dl o> glel luml < Shemly lyml > 2ol ()
Thus for y € B(x, 3,,) we have [z ~ |y|, |2n| ~ |ym].
Let z,y € R™\I' and |z — y| > 3 min(|2|, [ym|). Then the condition (i)
implies
ue) — u(y)| < cmin(fzm, lym]) = (min(1 + [2], 1+ [y) * <
< cla — y|” (min(|am], [ym]) 7" (min(1 + 2], 1+ y)) 77
and therefore the condition (ii) can be replaced by the condition
Vr,y € R\
lu(z) = u(y)] < cle — y|” (min(|zml, [ym]) " (min(L + |2|, 1+ [y)) ="

One can easily prove that the space H, 5(R™\I')[H}, 5(RT)] is the Ba-
nach one.
Consider the singular integral operator

() = A(u)(z) = - K(z, x — y)u(y)dy,

where K (z,z) = f(z, I—zl)\z|_m

Theorem 1. Let the characteristic [ defined on (R™\I') x (S(0,1)\I') sa-
tisfy the conditions

(a) Vo e R™\I' / flz,2)d,S =0;
5(0,1)

(b) Yz e R™\I', Vze S(0,1\I' |f(z,2)] <clzm| 7 (0<0 < a);
(¢) Va,y e R™\I', Vz,0,w € S(0,1)\T
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[f (@, 2) = f(y, 2)| < clw =yl (min(zm], lym]) ™" [2m] =7
[ (,0) = f(z,0)] < ¢l — " (min([0rn], [wm])) ™7
vn>v, vi+o<l.
Then the operator A is bounded in the space Hy g(R™\T').

Proof. In the first place note that the second inequality of the condition (c)
yields the inequality

Va,y,z € R™\I

’f'(‘r’ ﬁ) _ f(x7 i)| < C|y _ Z‘Vl( |y|U " |Zn|jlj+a> (2)

|2 |Ym |71+

Set

Dy = B(z, 5|lzm|), D2 = B(z, 5(1+|z])\Ds,
D3 = B(0,2(1+ |z)\(D1 UDs), Dsy=R"\(D;UDyUD;3), (3)
D={y: (¥ ,ym) €R™, lym| <2(]y'| +1)}.

‘We have

4
@) = [ Ko = )luty) — ueldy+ 3 /D K = y)uty)dy

Dy
Z Ii(z).

By virtue of the condition (ii) and the inequalities (1)

r—y

IR < clanl (Ul [ (=l = oyl <
< clan| (W la) [ IS al. (@)

)

If y & Dy, then |z — y| > 2(|2’ — y/| + |@m| + |ym|) and if y € Ds, then
1+y| > 1+ |z|—|z—y| > HTI"”‘ Therefore due to the conditions (i) and (b)

_ |ym|7a‘ym *xmra
()] < (1 + [2])~* / dylul.

Dy (17" = y'[ + [2m| + [ym[)™ =7

After performing the spherical transformation of ¢’ — 2/, we obtain

— o — o |ym|7a|xm - ymlig
()] < (1 + [2])~* / P2y / dym ]
; Tt o]+ T
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The transformation of r = |2 |7, Ym = |Tm|Um leads to

oo
Ta(a)| < el (U +[a) [ |l sign ] dy

— 00

oo
< [+l + )72 ] < el (14 Jol) 7 x
0

x / ]9 — i an] = (L i) g (5)

—0o0

The term I,(z) is evaluated in the same manner, since in that case, too,
1+ |y| > $(|z| +1). Represent I3(z) in the form

Iy(x) = /D K(r.z — yyuly)dy +

SOB(Ovélme

+ / K(z,o - yyuly)dy = Ju() + Jo(2).
D3\B(0,%|zm|)

If y € Dy, then [z —y| > 5(1+ [z]) > [yl; if y & B(0, 3|zm|), then
ly| > % and hence |y| > $(|y'| + |Zm| + |ym|). Therefore, in evaluating
Jo(x), we shall have

| J2(2)] < e(1 + |2[) 77 x
X/ Y|~ @m = Yl "7 (Y] + 2] + [y )7 dyllu])-
DS\B(Ovélwml)

After performing the spherical transformation of y’, we obtain, as in the
case of evaluating I»(x),

| 2(2)] < elam| (1 + |2]) 7 lull. (6)

Write Ji(z) in the form

Ji(z) = / K(z,2 - y)uly)dy +
DgﬁB(O,%\zm\)ﬂD

+ / K(z,2 - yuly)dy = J}() + T} (2).
DgﬁB(O,%\xm\)ﬁ(Rm\D)
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If y € B(0, %|xm|), then |Zm — ym| = |Tm| — |Ym| > %|xm| We have

@] < el o)™ e [ @)y
/1< (1 +z)

<[ |yl <
lym |<2(ly’[+1)

< CIme’”(Hlfc\)"‘m/ ) 1+ ')y ||ul| <
ly'|<3 (1+]z))

<l |~ (1 |2]) P |77 (T4 |2 )77 (e (T4 |2 )™= OF ) [luf <
< elam | (1 + [2]) =7 |lull, (7)
since o < a, a+ 3 < m.

If y € R™\D, then 1+ |y| < 1+ |y'| + |ym| < 2|ym|. Therefore

7 ()] < clom| =71+ |2)7 ™ /| ey DT o <
y|<g5(1+[z

< clam |7 (1 + [a]) 77l (8)
From the estimates (4)—(8) we obtain
[0(@)] < clam |7 (1 + [a) 77 |ful. 9)

Let us evaluate the difference v(x) — v(z). It is assumed that |z — z| <
#|@m]. Then |2z| ~ |z], \zm~| ~ X . N B
We introduce the set Dy = B(z,2|x — z|), Dy = B(z,3|z — z|), D3 =

B(z, }|#m| — |z — 2|). Clearly, D; € Dy C D3 C B(z, 3|zm|) = Di. We
have the representation

o) = oe) = [ [ =)~ Ko~ y)lu(o)dy =
— [ 1Ko~ y) = Koz = pluto)dy +

+ [ G )~ Kz - plut)dy = h(e2) + Dl 2)

By virtue of the first inequality of the condition (c¢) the term Iy (z,z) is
evaluated exactly in the same manner as v(z) and we obtain the estimate

[11(2,y)| < |~ (1 + ) 7P|z — 2| Jul. (10)

Rewrite the term I5(x, 2) in the form

Lz, 2) = /D K (22— y) — K (22 — p)]u(y)dy +
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+/‘ K (2 —y) — K(z,2 — g)u(y)dy =
an\Dl

= | K(z,x—y)uly) —u(@)|dy — / _ [K (2,2 = y)u(y)dy —
D1 Di\D3s

—/~ _ Kz, z=y)u(y) —u(z)ldy — [_ K(z z—y)lu(y)—u(z)]dy +
D3\D> D>

+/’ K (22 — ) — K(z 2 — g)]u(y)dy =
R™\ Dy

- (/5 +/D \B )K(m—y)[u@)—u(x)]dy_

— [ K(z,z —y)luly) — u(z)]dy —
Do

In evaluating J; (z, z), note that Dy C B(z, 4|z — z|), B(z, L] — 2z —
z|) € D3. Therefore by virtue of the condition (b) and the inequalities (1)
we obtain

\mens/‘ K (2,2 — y)|uly) — u()|dy +
B(z,4(z—=z))

wf o (K (2,2 — ) uly) — u(a)|dy <
Di\B(@, 3 em))=2le—2])
< el @ (1 + o) Pz — 2 ul, (11)

since (3]m|)” — (3lwm| — 2|z — 2])" < c|lz — 2|, Similarly, if y € Dy, then
ly —z| <3z — 2| < @ < 2|z |. Therefore

|22, 2)] < elam| "1+ J2) 7P|z — 2] ||ul. (12)

It is clear that B(z, |zm|) C B(z, |zm|+ |z — 2|) and hence

IA@JHSCMMﬂ%LHMYﬂ/ K (22— y)ldyllul <
Dl\D3
I |Tm| + 2|z — 2|

[ull <
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Ca - |z — 2|
m
< | I+ J2]) Pz — 2 ul.

Note that if y ¢ﬁ2, then
|£L'—y| >2|(E—Z|, |Z_y‘ >3|£L’—Z|,
4 3
o —yl <le—zl+lz—yl < glz—yl, [z -yl <jlz—yl

Taking these inequalities into account, the inequality (2) readily implies
that for y & Do

|K(va*y)7K(zazfy)| <

|:L._'Z|V1 |m_y|V1+U ‘Z_ylyl—‘ro- (14)
- _ y|m+trn _ vi+o _ vit+o )’
|z — y| [T — Yml |2m — Yml

using which we obtain
| Ja(x, 2)| < clam|” T (1 + |2])Pla — 2]t x

1 _ ylvito _ o |lvito
" /~ ) ( |z —y L ==yl )dyHUII <
D3\ D3 |z — Y™t N\ 2y — Y |17 2 — Y[ HO

< clam|T T 1+ J2) Pl — 2

1 T — vito
) s ()
DI\D1|$—ZU| '

|Zm — Yl
1 z— vito
+/~ ~ m—+v 71/( | y| )dy)
D3\ Dy |z — v ! |2m — Yml
Passing to the spherical coordinates and keeping in mind that “"I’;:z"",
zg:zr’ do not depend on the radius, we have

|32, 2)] < el "L+ |2]) T = 2 (Jem] T+ =27 Jul) <
< el TP+ Jal) P e = 2 ull. (15)

In deriving the estimate, we took into account that v < vy, v1 + 0 < 1. By
virtue of the inequality (14)

\Js (2, 2)| < ¢|z — x| (/

R™ \Dl

+ 2= 0l 2 — |~ ) ).
R™\B(z,%|2m])

|z = y7"" @ — ym| 7 uly)|dy +
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We evaluate the obtained integral expression by the same technique as was
used to evaluate the integral expression

[ Gl
R™\ Dy

(see the estimates (5)—(8)) and finally obtain
|J5(2, 2)| < ||~ (1 + [2) 7P|z — 2] ||ul. (16)
The estimates (10)—(13), (15), (16) show that
[0(2) = v(2)| < clam| =L+ Jal) e — 21 ull,
which, with the equality (9) taken into account, proves the theorem. O

Corollary 1. Under the conditions of Theorem 1 the operator
K(z,z — y)uly)dy
RT
is bounded when acting from the space Hgﬁ(IRT) into the space
HY 5(R™\D).

Definition 2. Let M be a closed set in R™. The set M is called an (m—1)-
dimensional manifold without a boundary of the class C* (0 < § < 1), if
for each € M there exist a positive number 7, and a neighborhood Q(x) of
the point x in R™, which is mapped by means of the orthogonal transform
T, onto the cylinder Qo = {€ : £ € R™, [¢'| < 1y, |&m] < 72} and if the
following conditions are fulfilled: T, (x) = 0, the set T,,(M N Q(z)) is given
by the equation &, = ¢, (¢'), |¢'| < ra; e € CY0 in the domain |¢/] < 7,
and O, ,(0)=0,i=1,... ,m—1.

Clearly, Q(x) is the cylinder to be denoted by C(z,7;).
In what follows the manifold M will be assumed compact.
We introduce the notation

d(z) =d(x, M) = ylg]\f/[ |z —y|, M(r)={z e R d(z) <1}

Note some properties of the function d(z):
d(@) < c(1+ |z]), [d(z) —d(y)| < clz —yl;
Vo € R™\M, Vy € B(z, 3d(z))
3
d(y) < Sd(z) < 3d(y), 1+ a] ~1+]yl;
Vo € M,Vy € C(x, 375)
d(y, M) = d(y, M N C(x,r5)) andif y=T,"(n), then
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d(y) < [mm — @2 (1)] < 2(1 + az)d(y), (18)
where a, is the Lipshitz constant of the function .
Definition 3. A function u defined on R™\M belongs to the space
HY s(R™MM) (0<v,a<1,B2>0,a+ 3 <m),if:
(i) Vo eR™M |u(z)| < cd ()1 +]a])7,
(i) Vz e R™\M, Vy € B(z, id(z))
lu(@) = u(y)| < ed” (@) (1 + |z) |z — y|".
The norm in the space HY 5(R™\M) is defined by the equality

lull = sup d*(x)(1 + |z])’|u(z)| +
zER™\ M

u(z) —u
+ sup d"T(z) (1 + |$|)67| (z) £y)|
TER™\ M |z -y
veB(z,kd(x))
The space Hy, 5(R™\M) is the Banach one.

Theorem 2. Let M € C'°, and let the characteristic f of the singular
operator A be defined on (R™\M) x S(0,1) and satisfy the conditions:

(a) Yz € R™M\M, Vz € S(0,1)
F2)| < e / f(z,2)d.S = 0;
5(0,1)
(b) Va,y € R™M, Y0,w € S(0,1)

[f(2,0) = f(y,0)] < clz —y|"(min(d(z),d(y))) ",
|f(2,0) — f(z,w)| <l —w|™, v<u.

Then the operator A is bounded in the space Hj 5(R™\M).
Proof. Let M C B(0,7¢) and e; be an infinitely differentiable function such

that ey (x) = 1 for |z| < ro+1, e1(x) = 0 for |z| > ro+2. Setting es = 1—eq,
we have

v@)= [ K =)o)y +

+ | Ko - yea(w)uly)dy = v(@) + va(a)

Let us evaluate the integral

vi(z) = K(z,z —y)ui(y)dy (u1 = eju).
]an
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Choose a constant 7* (0 < r* < 1) such that the system {C’(%7 1,
(aZs, t=1,...,l, are points of the manifold M) covers the manifold M and

C’(:%7 4r*),i=1,...,l, are again the coordinate neighborhoods.
We introduce the sets

Dy = B(z, 3d(z)), D2 = (B(z, 1r*)\D1) N B(0,ro +2)
D3 =B(0,70 +2)\(D1UDs), Dy={y:yeR™, dy) < ir'}

Now
vi(z) = : K(z,x —y)[ui(y) — ui(2)]dy +
1 3
+Z/ K(z, 2 —y)u(y )dyEZIz(JU)~

By virtue of the inequality (17) and the condition (ii) we obtain
1L(@)] < ed™ (@) (L + |z]) P fluall < ed™ (@) (1 + |al) P lull.  (19)

Next,
()] < / K (2,2 — y)lus ()| dy +
DsoNDy
+ / K (2,2 — y)llur(y)ldy = Io() + 12 (a).
D2\D4
If y € Dy, then 1+ |x| ~ 1+ |y| ~ ¢. Moreover, d(y) < 5r* for y € Dy N Dy

and therefore there exists ¢ (¢ = 1,... ,e) such that z,y € C(z ,3+2‘/§ ).
Let y =T ' (n), x = T, '(€). By virtue of the inequality (18)

o = 0,0 < 20+ )W), [6m = 1(6)] < 2(1+ 0, )d(a).
Taking into account that |z — y| > 1d(z), we therefore obtain

2 —yl =& —nl = 1(1€ = 0'| +[&m — Nl + d(@)) =

> (1) ™ (404 a)IE o+ — il + 401+ a,)d(w)) >
> (1 +a) ™ (1€~ 7|+ lnm — o, ()] + d(@)), (20)

Since [m = tim| 2 1 — 03 (1) = Lo (07) = 94 (€)] = lem — 9, (€")]- Thus

2r*

Bal<e [ af [ e x
_op*
&7 <4+ '
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< (I&" =0l + thm = @ ()| + d()) ™" iyl

Using the transform 7, — ¢ (n') = 7, we obtain
xT

4r* 4r*
@< [ [l il + d@) "l

—4r*
which, upon applying the transform r = d(z)7, n,, = d(z)7m, gives
[I(2)] < cd™ (@) ||ul| < ed™* () (L + [a]) 7 |ul|- (21)

If y € Dy\Dy, then d(y) > 4r*, 1d(z) < |z — y| < 1r* by virtue of which

d(z) > d(y) — |& —y| > 37*, |# —y| > §r*. Therefore
|13 (2)] < cllull < ed™(2) (1 + |]) =7 |lull. (22)
Finally, if y € Ds, then 1 + |z| < 1+ |y| + |z — y| < c|x — y|. Therefore
[I3(2)] < e(1+ |z) ™" [lull < ed™*(@)(1+ [2])~"||ul. (23)
The inequalities (19), (21)—(23) show that
[o1(2)| < ed™* () (1 + [2) =7 Jul. (24)

In evaluating the difference vy () —v1(2), it will be assumed that |z —z| <
#d(z). Then 1+ |z| ~ 1 + ||, d(z) ~ d(y).

We introduce the set

Dy = B(x,2|x —y|), D =B(2,3lz —z|), Ds=B(zLdx)— |z — z|).
Proceeding as in proof of Theorem 1, we obtain
[o1(2) = v1(2)] < ed” T (@) (1 + |2]) |z = 2] |lull- (25)
To evaluate the integral
va(z) = | K(z,z—yu(y)dy (u2 = ezu)
Rm

note that the function ws is defined on R™ and satisfies the conditions

of Definition 3, if the function d(x) is replaced by the function 1 + |z|.
Therefore, after introducing the sets

Dy = B(z,3(1+ [z])), D2 = B(0,2|z| +1)\D1, D3 =R"™\(D1UD,),
we readily obtain the estimate
v (2)] < ed™* (@) (1 + |2])~7ful. (26)
Now, considering the sets

Dy = B(z,2|z — 2|), Dy = B(z,3|z — 2|), D3=B(z,3(1+|z]) — |z —2|)
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it is easy to show that
[v2(2) = v2(2)] < ed™ (@) (1 + [2])Pla — 2]"Ju]. (27)
The estimates (24)—(27) prove the theorem. [
A result close to the one presented here is obtained in [9] (see also [10]).

Definition 4. A function u defined on R™ belongs to the space HY(R™)
(v, A > 0),if
u(@)] < e(L+ 2)) 7, Ju(z) —uly)] < clz —yl"pry ™

where pg, = min(1 + |z|, 1 + |y|).

Theorem 3. Let the characteristic f of the singular operator A satisfy the
conditions of Theorem 1, assuming that o < « and the first inequality of
the condition (c) is fulfilled in the strong form

[f(@,2) = f(y, 2)| < el — 2" (min([zm], [ym])" |2m] 77
It is also assumed that a € C(R™) (R™ = R™ U o) and (a — a(x)) €
H{' (R™). Then the integral operator

o) = Bl)(@) = [ a(e) - a()} (.~ pyuly)dy
is completely continuous in the space HY 5(R™\I').

Proof. From the proof of Theorem 1 it follows that B is the bounded

operator from the space HY 5(R™\I') into the space Hgf'; g2y (RT\D),

where 7 is an arbitrary positive number satisfying the condition
v <min{\, 11 —v,a —0,3(m— B —a)}.

Indeed, it is clear that

lo(a)] < /D la(z) — a@)||K (2,2 — )|u(y)|dy +

1UDsUDy

+/ (la(z) — a(o0)| + [a(y) — a(o0)|)| K (2, 2 — y)|[u(y)|dy.
D3

Taking into account that (a —a(oc0)) € H)(R™) and repeating the proof of
Theorem 1, we obtain

[0(2)] < elam |1+ |2]) 777 ful|. (28)
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Let us now assume that |z — 2| < §|zn,| and evaluate the difference
v(z) —v(z). We have

[vo(z)o(y)] < /~ la(z) — a()|| K (z, x — y)|uly)|dy +

2

+ /~ la(2) — a(@)||K (. = — 9)|u()dy +
D»

+ /Rm\Bl la(z) — a(2)[| K (z, 2 — y)lJu(y)|dy +

+/Rm\52 la(z) — a(y)||K(x,x — y) — K(z,z — y)||u(y)|dy = ;Ii(x, 2).

Hence
1i(2, 2)] < clam| (1 + |2)) 721+ |a)) ™Mz — 2 Jul| <
< a1+ )T )| (i =1,2). (29)
Write the term I3 in the form

Bie,2) = la@) = a@)|( [ Ko~ p)luto)ldy +

D1\D;
[ R Ga=lu)dy).
R™\ Dy
This representation gives

[I3(x, 2)| < cla — 2" (L J2) 7 a1+ J2]) 77 x

Lm —a—v —B— v
(In |a|:—|z| 1) ull < el [~ (14 ) e = 2177 u. (30)

To evaluate the integral term I note that for y ¢ D; we have

|z —y|°
|-Tm _ym|g
|x—y\l’1+‘7 |z—y|”1+‘7

|K($,]}—y)—K(Z,Z—y)| <c

n |z — 2| ( )
|z — y[mtm |xm_ym|ul+l7 |2m — Ym |1 .

Using this estimate in the same manner as in proving Theorem 1, we obtain
[Ta(z, 2)| < clam|™* 7 (14 [2)) 7772 e — 277 u]. (31)

The estimates (28)—(31) show that the operator B is bounded from the space

HY 5(R™\I') into the space Hgtz,ﬂwv (R™\T'). The validity of the theorem
now follows from the complete continuity of the operator of the embedding

of the space HZJ_rlﬁ_s_Qv(Rm\F) into the space HY 5(R™\T). O
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In a similar manner we prove

Theorem 4. Let m € C™9, let the characteristic f of the operator A sat-
isfy the conditions of Theorem 2, the first inequality of the condition (b)
being replaced by a stronger inequality

|f(2,8) = f(y,0)] < el —y["* (min(d(z),d(y))) ",

and let the function a satisfy the conditions of Theorem 3. Then the operator
B is completely continuous in the space H}, 5(R™\M).

2. We shall consider the matrix-function A(§) = ||Ai;(§)|lnxn- Let
AN = A(§) (A>0), Ay € CF(R™\0), det A(§) #0 (£ #0).
We set Ag = A71(0,...,0,—1)A(0,...,0,+1). It is assumed that A,

(j = 1,...,s) is the eigenvalue of the matrix Ay and r; is its multiplic-
ity (E;Zl Tj =n).
We introduce the matrices B, (a) = || Byr(a)]|rxr where
0, v<k;
Bop(a) =< 1, v=k;

(‘f‘/%;,;!, v>k,
B(r;; o) = diag [Bm (a),... s By, (a)] (rag+ -+ rip, =T4)-
By the Jordan theorem the matrix Ag is representable in the form Ay =
gBg~', where det g # 0, B is the modified Jordan form of the matrix Ag,
B = diag[\ B(r1;1),... , AsB(rs;1)]. We introduce the notation

k—1 k
1 , | | ,
5j:%1n/\j, 0; =0, for VE:11“,,<]§UE:1TV, j=1...,n;
1 & E|¢
ax(§) = o In |€/|| | (6/ = (&1, 5 €m-1));

by In z we denote a logarithm branch which is real on the positive semi-axis,
ie, —m<argz <,

T4 J1E7N 61 J1ETN On
(£m E/Tlﬁ I) Ediag[(’fm E/Tlﬁ I) . (§m EZS I) I
B4 (§) = diag [B(rl; ax(§),...,B(rs; ai(f))].

Theorem 5. Let the matriz A be strongly elliptic. Then A admits the
factorization A(€) = cgA_(&,6m)D(E) AL (€, 6m)g™ ", where
c=A0,...,+1), D(€) = B_(&)(Em — il') (&m +ilE') 7 BL(€),
A:(A) = Ax(§) (A>0), det AL(S) #0.
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For |¢'| # 0 the matrices Ay, A;l (accordinly, A_, A™") admit analytic
continuations with respect to &, into the upper (lower) complex half-plane
and these continuations are bounded.

Moreover, for any natural number k the matriz A4 admits the expansion

A:t(é-l7£m) - I+
k (p+1)(2n-1)

p=1 q=0

€'l 1’1 €'l

k E k
where cP? € C®(R™1\0), A\XE) = A(¢) (A > 0), A € CFR™\0). Similar
expansions also hold for the inverse matrices A;l,

Let us outline a scheme for proving the theorem.
We set
Em — il¢]

A(§) = ( )763:1(@9—%—1(0,... ,0,4+1) x

€]
*A(€)9B+ () (g

Zy ={z=x1 +ixg, 20 >0}, Z_={z=uz1+ixe, o <O0}.

§m+i|§/|>5’

Consider the homogeneous Hilbert problem: Find an analytic (in the do-
main Z, UZ_) matrix-function ®(¢’, z), which is left and right continuously
extendable on R, by the boundary condition

O (¢, t) = A& )01 (¢, ), lim ®(¢,2) =1, lim &, 2) =1

Z435z—00 Z_2z—00

The solution is to be sought in the form

1 [ e, z2)
D¢, 2) = -— [ T dt+ 1.
(€.2) 2m'/R P,

To define the matrix ¢ we obtain the system of singular integral equations
1 't
(A*<f’,t0) + I)(p(&’)to) =+ 7_(14*(5/7??0) _ I) / (&', t)
e R t — tO
=2(1 — A, (¢, t0)). (33)

One can prove that the system (33) is unconditionally and uniquely solvable
and obtain, after a rather sophisticated reasoning, the desired result.

dt =

Remark 1. The fact that partial indices of the strongly elliptic matrix A
are equal to zero is proved in [5]. An expansion of the form (32) when A is
a scalar function is also obtained therein.
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Let D be a finite or infinite domain in R™ bounded by the compact
manifold without a boundary M from the class C1¥1.
Consider the matrix singular operator

A(u)(z) = alz)u(z) + /D f(z, ﬁ)n —y "uly)dy,  (34)
() = [lai(@)|nxns  F(@,2) = [|fij (@ 2)]lnxn,
= (Ug,... ,Up)

in the spaces [H 5(D)]" (0 < a,v <1, v <, >0, a+ 3 <m)and
[Lp(D, (1+ 2] (p> 1, -2 <y < 2 pf = 20) we Ly(D, (1+|a])
Jp lu(@)P(1 + |z])PVdx < oo.

Taking into account the character of the linear bounded operator acting
in the spaces with two norms (see [11]), the proved theorems enable us to
prove

Theorem 6. Let a€ HY' (D), f(x,-)€C>®(R™\0), Jso f(@,2)d.S = 0;

o f(-,z)eHY (D), |p| = 0,1,..., if the domain D is bounded; lim f(z,z)=

f(00,2) and 92 (f (-, z)—f(c0, 2)) € HY* (D), if the domain is unbounded. The
determinant of the symbol matriz ®(A)(x,&) of the integral operator (34) is
different from zero and either of the following two conditions is fulfilled:
(i) VYo € M the matriz ®(A)(z,§) is strongly elliptic and Hermitian; (ii)
Vo € M the matric ®(A)(z,§) is strongly elliptic and odd with respect to
the variable €.

Then the operator A is the Noether operator both in the space [L,(D, (1+
[z])")]™ and in the space [H} 5(D)]". Any solution of the equation

A(u)(z) = g(x), g € [Lp(D, (1 + [2))]" N [He 5(D)]" (35)

from the space [L,(D, (14 |x])7)]™ belongs to the space [L,(D, (1+|x])7)]"N
[Hy, 5(D)]". For equation (35) to be solvable it is necessary and sufficient
that (g,v) = 0, where v is an arbitrary solution of the formally conjugate
equation A'(v) = 0 from the space [Ly (D, (1 + |z[)=7)]" into [H}, 5(D)]".
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